Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Radiol ; 83(3): 531-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24387825

RESUMEN

PURPOSE: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. MATERIAL AND METHODS: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. RESULTS: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures are clearly visible. CONCLUSION: In this article we present the first proof-of-principle grating-based phase-contrast tomosynthesis of a mastectomy sample section. A comparison of conventional attenuation with phase-contrast and dark-field tomosynthesis indicates that complementary information from three signals yields an increase in diagnostic value, which is verified in a comparison of our results to histological sections of the sample. As grating-based phase-contrast mammography efficiently works with conventional lab sources, our benchmark results indicate the potential benefit of translating phase-contrast tomosynthesis into a clinical setting.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/diagnóstico por imagen , Imagenología Tridimensional/métodos , Intensificación de Imagen Radiográfica/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Neoplasias de la Mama/cirugía , Carcinoma Ductal de Mama/cirugía , Estudios de Factibilidad , Femenino , Humanos , Mastectomía , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Eur Radiol ; 23(2): 381-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22932738

RESUMEN

OBJECTIVE: Limited contrast between healthy and tumour tissue is a limiting factor in mammography and CT of the breast. Phase-contrast computed tomography (PC-CT) provides improved soft-tissue contrast compared with absorption-based techniques. In this study, we assessed the technical feasibility of grating-based PC-CT imaging of the breast for characterisation of ductal carcinoma in situ (DCIS). METHODS: Grating-based PC-CT was performed on one breast specimen containing an invasive ductal carcinoma and DCIS using monochromatic radiation of 23 keV. Phase-contrast and absorption-based images were compared qualitatively and quantitatively with histopathology in a blinded fashion. RESULTS: Grating-based PC-CT showed improved differentiation of soft-tissue components. Circular structures of high phase-shift contrast corresponding to the walls of the dilated ductuli of the DCIS were visualised with a contrast-to-noise ratio (CNR) of 9.6 using PC-CT but were not detectable on absorption-based images (CNR = 0.27). The high phase-shift structures of the dilated ductuli were identifiable in the PC-CT volume data set allowing for 3D characterisation of DCIS. CONCLUSIONS: Our results indicate that unlike conventional CT, grating-based PC-CT may allow the differentiation between invasive carcinoma and intraductal carcinoma and healthy breast tissue and provide 3D visualisation of DCIS.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X/métodos , Anciano , Biopsia con Aguja , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/cirugía , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Intraductal no Infiltrante/cirugía , Medios de Contraste , Diagnóstico Diferencial , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Inmunohistoquímica , Mamografía/métodos , Mastectomía/métodos , Intensificación de Imagen Radiográfica/métodos , Manejo de Especímenes
3.
Neuroimage ; 66: 288-92, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23123681

RESUMEN

Visual art because of its artistic context can be related to the general idea of providing alternative perceptual experiences. However, research examining the neural basis of art beyond the paradigm of beauty has been neglected. This study seeks to determine how the perception of a body in an artwork can be distinguished from the perception of a body in a non-artistic photography. While viewing different body representations in both artworks and photographs, subjects were required to evaluate the appeal of the portrayed persons. By using functional magnetic resonance imaging (fMRI) we show that the perception of a body within the context of art leads to a higher activation in the right parietal cortex and the extrastriate cortex bilaterally. Relating this result to concepts from previous research, we suggest that the perception of art is linked to visuo-spatial coding and also motor mapping. In contrast, the higher activity in the ventromedial prefrontal cortex and the primary visual cortex during the perception of a body in a non-artistic frame of reference, i.e. in a photograph, can be linked to processes of person evaluation. Possibly, the task to judge the appeal of a person in a photograph might be more daunting and, thus, cause emotional and even moral challenges being reflected in the ventromedial prefrontal activity. Taken together, perceptual experiences within an artistic vs. a non-artistic frame of reference are based on distinct patterns of neuronal activity.


Asunto(s)
Arte , Mapeo Encefálico , Encéfalo/fisiología , Fotograbar , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
4.
Proc Natl Acad Sci U S A ; 109(45): 18290-4, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091003

RESUMEN

Mammography is the primary imaging tool for screening and diagnosis of human breast cancers, but ~10-20% of palpable tumors are not detectable on mammograms and only about 40% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic method for 3D diagnosis of human breast cancers. By combining phase contrast X-ray imaging with an image reconstruction method known as equally sloped tomography, we imaged a human breast in three dimensions and identified a malignant cancer with a pixel size of 92 µm and a radiation dose less than that of dual-view mammography. According to a blind evaluation by five independent radiologists, our method can reduce the radiation dose and acquisition time by ~74% relative to conventional phase contrast X-ray tomography, while maintaining high image resolution and image contrast. These results demonstrate that high-resolution 3D diagnostic imaging of human breast cancers can, in principle, be performed at clinical compatible doses.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagenología Tridimensional/métodos , Tomografía por Rayos X/métodos , Algoritmos , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Intensificación de Imagen Radiográfica
5.
Biomed Opt Express ; 3(6): 1141-8, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22741063

RESUMEN

We present a numerical tool to compare directly the contrast-to-noise-ratio (CNR) of the attenuation- and differential phase-contrast signals available from grating-based X-ray imaging for single radiographs. The attenuation projection is differentiated to bring it into a modality comparable to the differential phase projection using a Gaussian derivative filter. A Relative Contrast Gain (RCG) is then defined as the ratio of the CNR of image values in a region of interest (ROI) in the differential phase projection to the CNR of image values in the same ROI in the differential attenuation projection. We apply the method on experimental data of human breast tissue acquired using a grating interferometer to compare the two contrast modes for two regions of interest differing in the type of tissue. Our results indicate that the proposed method can be used as a local estimate of the spatial distribution of the ratio δ/ß, i.e., real and imaginary part of the complex refractive index, across a sample.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA