RESUMEN
Investigation of the contents of the scent glands of the heliconiine butterfly Heliconius erato phyllis via gas chromatography/electroantennography revealed an unprecedented active compound. The males transfer this compound to females during mating. The structure of (2R,6E,10R)-2,6-dimethyl-6-undecen-10-olide, a derivative of geranylacetone, was proposed on the basis of infrared and mass spectrometry spectra and microderivatization and confirmed by racemic and stereoselective syntheses. Bioassays with the synthetic macrolide showed the repellency of this compound, termed phyllisolide, when applied to scent glands of females, identifying it as an anti-aphrodisiac pheromone.
Asunto(s)
Mariposas Diurnas , Macrólidos , Feromonas , Glándulas Odoríferas , Animales , Afrodisíacos/química , Mariposas Diurnas/química , Femenino , Macrólidos/química , Masculino , Feromonas/química , Glándulas Odoríferas/químicaRESUMEN
The Celastraceae family comprises about 96 genera and more than 1.350 species, occurring mainly in tropical and subtropical regions of the world. The species of this family stand out as important plant sources of triterpenes, both in terms of abundance and structural diversity. Triterpenoids found in Celastraceae species display mainly lupane, ursane, oleanane, and friedelane skeletons, exhibiting a wide range of biological activities such as antiviral, antimicrobial, analgesic, anti-inflammatory, and cytotoxic against various tumor cell lines. This review aimed to document all triterpenes isolated from different botanical parts of species of the Celastraceae family covering 2001 to 2021. Furthermore, a compilation of their 13C-NMR data was carried out to help characterize compounds in future investigations. A total of 504 pentacyclic triterpenes were compiled and distinguished as 29 aromatic, 50 dimers, 103 friedelanes, 89 lupanes, 102 oleananes, 22 quinonemethides, 88 ursanes and 21 classified as others.
Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Celastraceae/química , Triterpenos Pentacíclicos/farmacología , Animales , HumanosRESUMEN
The nitidulid beetle Lobiopa insularis is an important pest of strawberry crops in the United States and Brazil. Both larvae and adults feed on ripe strawberries, causing 20-70% loss in production during serious infestations. Aiming at the development of efficient, clean, and highly specific pest management systems, semiochemicals, especially pheromones, are particularly useful. Analyses of the extracts of both males and females obtained from aeration of live beetles showed the presence of three male specific compounds, 2-nonanone, 2-undecanone, and 2-undecanol (in an enantiomeric ratio of S:R = 3.5:1). This is the first record of ketones and an alcohol as pheromone components in Nitidulidae. These compounds were emitted by males in amounts of 0.3:6:1.5 ng per insect within 24 h (1:30:3), respectively, during the scotophase, indicating nocturnal sexual activity. Field tests with pitfall traps containing different mixtures of compounds and ripe strawberries as a co-attractant summed up to five treatments with 25 replications. As a result, 59% males and 41% females (1:0.7) were caught, indicating the L. insularis pheromone to cause aggregation of both sexes. Results of the field tests showed that the attractivity of the binary mixture of ketones (T3) differed from the control (T5), from traps with 2-undecanone alone (T4), and from the mixture of 2-undecanone and racemic 2-undecanol (T2). Moreover, the activity of the ternary mixture of compounds (T1) was not different from that of T3, indicating that the racemic alcohol did not positively influence trap catches. In future applications, a mixture of synthetic strawberry-derived compounds that are attractive to L. insularis may substitute rapidly decaying fruit in the field, maintaining catches for longer periods. Because of its efficiency and low cost, a mixture of 2-undecanone and 2-nonanone is recommended to catch adult L. insularis in the field.
Asunto(s)
Conducta Animal , Escarabajos/química , Escarabajos/fisiología , Feromonas/química , Compuestos Orgánicos Volátiles/química , Animales , Alcoholes Grasos/química , Femenino , Fragaria , Cromatografía de Gases y Espectrometría de Masas , Humanos , Cetonas/química , Larva/fisiología , Masculino , Feromonas/fisiología , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The photophysical properties of a new alternating copolymer containing fluorene, terpyridine, and complexed sites with trivalent europium (Eu(3+)) ions (LaPPS66Eu) were investigated, using the non-complexed backbone (LaPPS66) and a low molecular weight compound of similar chemical structure of the ligand/Eu(3+) site (LaPPS66M) as a model compound. The analogous gadolinium complex (LaPPS66Gd) was also synthesized to determine the triplet state of the complex. (1)H and (13)C nuclear magnetic resonance (NMR) analysis, Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), elemental analyses, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) characterized the chemical structure and thermal properties of the synthesized materials. A level of Eu(3+) insertion of 37% (molar basis) in the polymer backbone was achieved. The photoluminescence studies were performed in the solid state showing the occurrence of polymer-to-Eu(3+) energy transfer brought about by the spectral overlap between the absorption spectra of the Eu(3+) complex and the emission of the polymer backbone. A detailed theoretical photoluminescence study performed using time-dependent DFT (TD-DFT) calculations and the recently developed LUMPAC luminescence package is also presented. The high accuracy of the theoretical calculations was achieved on comparison with the experimental values. Aiming at a deeper level of understanding of the photoluminescence process, the ligand-to-Eu(3+) intramolecular energy transfer and back-transfer rates were predicted. The complexed materials showed a dominant pathway involving the energy transfer between the triplet of the dbm (dibenzoylmethane) ligand and the (5)D1 and (5)D0 Eu(3+) levels.
RESUMEN
We determined the site of pheromone production tissues and a partial route for the biosynthesis of the sex pheromone in Hedypathes betulinus (Coleoptera: Cerambycidae: Lamiinae), Brazil's main green maté pest. Pheromone was found predominantly in the prothorax of males, suggesting that this is the region of production of pheromones in this insect. Scanning electron microscopy revealed small pores that may be associated with pheromone release in males; these pores also were observed in females. A deuterium-labeled putative precursor (geranyl acetone-D5) of the sex pheromone of H. betulinus was synthesized. When applied to the prothorax of males, label from the precursor was incorporated into the pheromone components, confirming that pheromone production occurs in the prothorax and that the pheromone components are biosynthesized from geranyl acetone.