RESUMEN
Steady-state and time-resolved fluorescence spectroscopy were employed in the study of the structure and interactions of alpha-MSH (alpha-melanocyte-stimulating hormone) and its analogs, [Nle4,D-Phe7]-alpha-MSH (MSH-I) and Ac-[Nle4,Asp5,D-Phe7,Lys10]-alpha-MSH(4-10)-NH2 (MSH-II). In aqueous buffer, the fluorescence parameters of the single tryptophan of alpha-MSH and MSH-I were similar and did not allow any distinction between these molecules. On the other hand, the tryptophan fluorescence of MSH-II was notably different, reflecting its cyclic lactam turn structure. In the presence of acidic lipid vesicles, the fluorescence properties of the peptides were different, indicating structural changes on incorporation of the peptide into the liquid-crystalline phase of the lipid. No evidence of interaction was observed in the presence of the neutral lipid dimyristoylphosphatidylcholine (DMPC). The association constants for lipid-peptide interactions were compared for binding isotherms which either neglected or accounted for electrostatic effects through Gouy-Chapman potential functions. The relative order of association constants in either treatment was MSH-II > MSH-I > alpha-MSH. These results parallel the reported biological activities that show increased potencies and prolongation of response for the analogs, MSH-II and MSH-I, as compared to the native hormone, alpha-MSH. Time-resolved fluorescence results showed that the fluorescence decay of melanotropins is best described by triple-exponential kinetics. In the lipid-peptide complex, there was a change in the relative concentrations of the components, with the intermediate-lifetime component predominating compared to those in solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Asunto(s)
Lípidos/química , Hormonas Estimuladoras de los Melanocitos/química , Péptidos/química , Triptófano/química , Secuencia de Aminoácidos , Sitios de Unión , Metabolismo de los Lípidos , Hormonas Estimuladoras de los Melanocitos/metabolismo , Datos de Secuencia Molecular , Péptidos/metabolismo , Soluciones , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Temperatura , AguaRESUMEN
Optical absorption and fluorescence spectroscopies were employed in the study of the interaction between synthetic L-dopa (dihydroxyphenylalanine) melanin and the cationic porphyrins tetrakis(4-N-methylpyridyl) porphyrin (TMPyP), tetrakis(4-N-benzylpyridyl)porphyrin (TBzPyP), zinc tetrakis(4-N-methylpyridyl)porphyrin (ZnTMPyP) and zinc tetrakis (4-N-benzylpyridyl)porphyrin (ZnTBzPyP). Optical absorption and fluorescence properties of the porphyrins were dependent on the symmetry of the central ring. No evidence was found for dimerization of the porphyrins in phosphate buffer, pH 7, in the concentration range between 4 x 10(-8) to 5 x 10(-5) M. Addition of L-dopa melanin red shifted the optical absorption spectra of porphyrins, concomitant to broadening and reduction in intensity of the bands. L-Dopa melanin also strongly quenched the fluorescence of the porphyrins. Time resolution of the fluorescence decay of porphyrins showed at least two lifetimes that were only slightly modified in the presence of melanin. The interaction between melanin and porphyrin resulted in the formation of non-fluorescent ground state complexes. It was found that there are two different classes of binding sites in melanin for complexation with cationic porphyrins and the values of dissociation constants are of the order of 10(-8) M. These values and the number of binding sites are dependent on the nature of the porphyrins. It was shown that the binding has electrostatic origin, but it is also affected by metal coordination and hydrophobic interaction.