Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 33(8): 1569-1576, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35861584

RESUMEN

Negative polarity atmospheric pressure chemical ionization of selected chlorinated hydrocarbons (tetrachloromethane CCl4 and hexachloroethane C2Cl6, dichloromethane CH2Cl2, trichloromethane CHCl3, 1,1,1,2-tetrachloroethane 1,1,1,2-C2H2Cl4, 1,1,2,2-tetrachloroethane 1,1,2,2,-C2H2Cl4 1,1,2-trichloroethane 1,1,2-C2H3Cl3, and 1,1,2-trichloroethane 1,1,2-C2HCl3) was studied using ion mobility spectrometry (IMS) and IMS combined with time-of-flight mass spectrometer (IMS-TOF MS) techniques, in the dry air and at two different drift gas temperatures (323 and 373 K). The ionization was performed using the O2-CO2(H2O)0,1 reactant ions (RIs), and the dominant ionization reaction was the dissociative electron transfer. The ionization resulted in the appearance of Cl- ions for all substances and [O2H..Cl]- ions, which were absent in the case of perchlorinated substances. The quantum-chemical calculations at the density functional theory level of theory using the ωB97X-D/aug-cc-pVTZ method were performed to calculate the thermochemical data (heats of formations, electron affinities, reaction enthalpies) for RIs, neutral substances, neutral fragments, and the anionic fragments. The calculations supported the experimental observations regarding the endothermicity of the Cl- channel for all substances and the exothermicity of the [O2H..Cl]- channel for the tetrachloro- and trichloroethanes.


Asunto(s)
Hidrocarburos Clorados , Espectrometría de Movilidad Iónica , Presión Atmosférica , Iones/química , Espectrometría de Masas/métodos
2.
Rapid Commun Mass Spectrom ; 35(17): e9145, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34142397

RESUMEN

RATIONALE: Phthalates are widely used in consumer products in the chemical industries. Due to their abundance in the milieu, their potentially harmful effect on the environment, human and animal health there is a need for sensitive and fast methods for their detection. METHODS: Positive polarity Corona Discharge Atmospheric Pressure Chemical Ionization (CD-APCI) in the air was applied for ionization of phthalates. The ionization method for the phthalates was studied by atmospheric pressure Ion Mobility Spectrometry (IMS) and hybrid IMS/orthogonal acceleration Time-of-Flight Mass spectrometry (IMS-oaTOF-MS). RESULTS: CD-APCI IMS and MS spectra of selected phthalates (dimethyl phthalate, diethyl phthalate, diethyl isophthalate, diethyl terephthalate, dipropyl phthalate, diisopropyl phthalate, dibutyl phthalate, diisobutyl phthalate, and dibutyl terephthalate) were recorded. In the case of the ortho- and "iso"-isomers exclusively the protonated molecular ions [M + H]+ were detected. In the case of the para- and meta-isomers and regioisomers, APCI resulted in the appearance of hydrated protonated molecular ions [M + H]+ ·(H2 O)0,1,2 . The ion mobilities, collision cross-sections of these ions in air, as well as the limits of detection (LODs) for the phthalate vapors, were determined. In the case of isomeric phthalates, we have demonstrated the potential of the IMS technique for their separation. CONCLUSIONS: The results show that CD-APCI in combination with IMS and IMS-oaTOF-MS is a suitable method for the fast and sensitive detection of phthalates with the potential to separate some isomers.

3.
Eur J Mass Spectrom (Chichester) ; 26(3): 204-212, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31979982

RESUMEN

In Hadamard transform ion mobility spectrometry (HT IMS), the signal-to-noise ratio is always lower for non-modified pseudorandom sequences than for modified sequences. Since the use of non-modified modulating pseudorandom sequences is strategically preferable from a duty cycle standpoint, we investigated the change in the interference signal when transitioning from non-modified modulating sequences to sequences modified by the addition of 1,3,5 and 7 zeros. The interfering signal in HT IMS with modified pseudorandom sequences was shown to be mainly random noise for all the cases except for modifying by incorporation of 1 zero. For standard samples of tetraalkylammonium halides, modulation by non-modified pseudorandom sequences is beneficial in the case of small numbers of averaged spectra (below ∼40 averaged spectra compared to any modified pseudorandom sequences except for 1 zero modified and below ∼200 averaged spectra compared to signal averaging ion mobility spectrometry) and worsens the signal-to-noise ratio in the case of large numbers of averaged spectra. Contrarily, modulation by modified pseudorandom sequences is beneficial for any number of averaged spectra, except for very small ones (below 15 averaged spectra compared to modulation by non-modified sequences). Pseudorandom sequence modified with 1 zero incorporation is beneficial in the case of below ∼400 averaged spectra compared to any modified and non-modified pseudorandom sequences. The signal-to-noise ratio in conventional signal averaging mode ion mobility spectrometry is affected by random noise, whereas the HT IMS with non-modified pseudorandom sequences was demonstrated to be primarily affected by a systematic noise-like artefact signal. Because noise-like artefact signals were found to be reproducible, predicting models for interference signals could be generated to improve signal-to-noise ratio. This is significant because non-modified modulating sequences are limited by their poor signal-to-noise ratio. This improvement would increase the viability of non-modified modulating sequences which are preferred because of their higher sample utilization efficiency.

4.
Eur J Mass Spectrom (Chichester) ; 24(1): 96-107, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29160094

RESUMEN

The main advantages of laser sampling are associated with following features: sample preparations as well as consumables are not needed, low risk of sample contamination, good spatial resolution. In mass spectrometry, high laser irradiance can be used for both ablation and ionization processes. The method is especially profitable in time-of-flight mass spectrometry. A new principle of constructing laser ionization time-of-flight mass spectrometer based on wedge-shaped ion mirrors and the absence of electrostatic ion acceleration before mass analysis is discussed. Among advantages of the analyzer there are ability to provide temporal focusing of ions in a wide energy range (±20%), compactness of the analyzer, and minimization of the requirements for power supplies. The approach is expected to be profitable for standardless elemental analysis of solid samples, which should be possible at laser irradiation power density more than 3 × 109 W/cm2 that ensures complete ionization of all elements in a laser plasma. The analytical signal of each element is formed as the sum of the signals for all charge states and the energy scan of the mass spectra is provided.

5.
Eur J Mass Spectrom (Chichester) ; 23(4): 136-139, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29028395

RESUMEN

We consider an experiment on trapping and laser cooling of 229Th3+ ions in a linear Paul trap in the presence of undesirable impurities such as ions of the radioactive isotope 228Th3+. We suggest a method of separating these impurities by means of selective laser cooling utilizing the isotope shift of cooling transitions in 229Th3+ and 228Th3+ ions. According to our estimation, the isotope shift is equal to 3.4 GHZ and makes laser separation of these isotopes possible.

6.
Eur J Mass Spectrom (Chichester) ; 23(4): 129, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29028393
7.
Eur J Mass Spectrom (Chichester) ; 23(4): 146-151, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29028406

RESUMEN

We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th+, Th2+ and Th3+ ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm2. Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of 232Th+, 232Th2+, 232Th3+ ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.

8.
Eur J Mass Spectrom (Chichester) ; 22(6): 289-296, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27900858

RESUMEN

An ion mobility time-of-flight mass spectrometry (IM-TOFMS)-based method has been preliminarily investigated for the identification of triphenylmethane ballpoint pen dyes on paper. The dyes were sampled from one-year-old ballpoint pen ink entries. The entries were written on paper documents stored in the dark in a bookcase. Sample solutions were prepared by extraction of dyes in a vial. Basic violet 2, Methyl violet 6B, Methyl violet 2B and Crystal violet were characterized by IM-TOFMS. Since the ballpoint ink dyes contain ionic compounds, the studied compounds were expected to form stable peaks in the atmospheric pressure drift tube ion mobility spectrometry, and this was experimentally verified. The studied dyes produce [M - Cl]+ ions in electrospray and form stable individual mass-selective reduced mobility peaks. The values of the characteristic reduced mobility are: 1.187 cm2/(V·s) for Basic violet 2 (m/z 330.20), 1.165 cm2/(V·s) for Methyl violet 6B (m/z 344.21), 1.156 cm2/(V·s) for Methyl violet 2B (m/z 358.23), 1.123 cm2/(V·s) for Crystal violet (m/z 372.24). IM-TOFMS is expected to be a promising tool for fast and reliable analysis of dyes in complex matrixes.

9.
Eur J Mass Spectrom (Chichester) ; 21(3): 335-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26307714

RESUMEN

The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq.

10.
Artículo en Inglés | MEDLINE | ID: mdl-25906029

RESUMEN

There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

11.
Talanta ; 132: 889-93, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25476393

RESUMEN

Eight selected isomeric amines were ionized using atmospheric pressure chemical ionization and atmospheric pressure photoionization producing a protonated molecule [M+H](+) for each amine. The mobility of these ions was measured by ion mobility spectrometry. The amine compound class was shown to have an important role in mobility separation of the amines. 2,4,6-collidine, N,N-dimethylaniline and N-methyl-o-toluidine with highest observed mobilities have a N-heterocyclic aromatic ring, or are tertiary or secondary amines, respectively, whereas the rest of the compounds with lower mobilities were primary amines. It is suggested that the protonated -NH2 group (-NH3(+)) interacts more with the drift gas, and therefore the primary amines have lower mobilities. The effect of the drift gas was tested by mixing argon or helium with the nitrogen drift gas. The presence of argon shifted the mobilities towards lower values, while with helium the mobility shifted towards higher values. However, in neither case did this result in better separation of the unresolved compounds.


Asunto(s)
Compuestos de Anilina/aislamiento & purificación , Protones , Piridinas/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Presión Atmosférica , Iones , Isomerismo
12.
Eur J Mass Spectrom (Chichester) ; 20(2): 185-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24895779

RESUMEN

Characteristic ion mobility mass spectrometry data, reduced mobility, and limits of detection (signal-to-noise ratio = 3) were determined for six synthetic drugs and cocaine by ion mobility time-of-flight mass spectrometry (IM-TOF-MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). The studied synthetic illicit drugs recently appeared on the recreational drug market as designer drugs and were methylone, 4-MEC (4'-methylethcathinone), 3,4-MDPV (3,4-methylenedioxypyrovalerone), JWH-210 [4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone], JWH-250 [2-(2-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone], and JWH-203 [1-pentyl-3-(2'-chlorophenylacetyl) indole]. Absolute reduced mobilities in nitrogen were 1.35, 1.28, 1.41, 1.30, 1.18, 0.98, 1.09, and 1.07 cm2V(-1)s(-1), for methylone [M-H]+, methylone [M+H]+, 4-MEC [M-H]+, 4-MEC [M+H]+, 3,4-MDPV [M+H]+, JWH-210 [M+H]+, JWH-250 [M+H]+, and JWH-203 [M+H]+, respectively. Selected illicit drugs are easily identified by IM-TOF-MS during a 100s analysis. Relative Limits of detection ranged from 4 to 400 nM are demonstrated for these compounds. Such relative limits of detection correspond to 14 pg to 2 ng absolute limits of detection. Better detection limits are obtained in APCI mode for all the illicit drugs except cocaine. ESI mode was found to be preferable for the IM-TOF-MS detection of cocaine at trace levels. A single sample analysis is completed in an order of magnitude less time than that for conventional liquid chromatography/mass spectrometry approach. The application allows one to consider IM-TOF-MS as a good candidate for a method to determine quickly the recently surfaced designer drugs marketed on the internet as "bath salts," "spice," and "herbal blends".


Asunto(s)
Drogas de Diseño/análisis , Drogas de Diseño/química , Drogas Ilícitas/análisis , Drogas Ilícitas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Detección de Abuso de Sustancias/métodos
13.
Anal Chem ; 85(19): 9003-12, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23968331

RESUMEN

Recently developed ion mobility mass spectrometer is described. The instrument is based on a drift tube ion mobility spectrometer and an orthogonal acceleration electrostatic sector time-of-flight mass analyzer. Data collection is performed using a specially developed fast ADC-based recorder that allows real-time data integration in an interval between 3 and 100 s. Primary tests were done with positive ion electrospray. The tests have shown obtaining 100 ion mobility resolving power and 2000 mass resolving power. Obtained for 2,6-di-tert-butylpyridine in electrosprayed liquid samples during 100 s analysis and full IMS/MS data collection mode were 4 nM relative limits of detection and a 1 pg absolute limit of detection (S/N=3). Characteristic ion mobility/mass distributions were recorded for selected antibiotics, including amoxicillin, ampicillin, lomefloxacin, and ofloxacin. At studied conditions, lomefloxacin forms only a protonated molecule-producing reduced ion mobility peak at 1.082 cm(2)/(V s). Both amoxicillin and ampicillin produce [M + H](+), [M + CH3OH + H](+), and [M + CH3CN + H](+). Amoxicillin shows two peaks at 0.909 cm(2)/(V s) and 0.905 cm(2)/(V s). Ampicillin shows one peak at 0.945 cm(2)/(V s). Intensity of protonated methanol containing cluster for both ampicillin and amoxicillin has a clear tendency to rise with sample keeping time. Ofloxacin produces two peaks in the ion mobility distribution. A lower ion mobility peak at 1.051 cm(2)/(V s) is shown to be formed by [M + H](+) ions. A higher ion mobility peak appearing for samples kept more than 48 h is shown to be formed by both [M + H](+) ion and a component identified as the [M + 2H + M](+2) cluster. The cluster probably partly dissociates in the interface producing the [M + H](+) ion.

14.
Artículo en Inglés | MEDLINE | ID: mdl-22274949

RESUMEN

Using a simple ion source set-up, laser desorption/ionization on silicon (DIOS) was demonstrated with the use of a custom-made drift tube ion mobility spectrometer (IMS), mounted on a commercial triple quadrupole mass spectrometer, and with an IMS equipped with a Faraday plate detector. DIOS was tested by mobility measurement of tetrapropylammonium iodide, tetrabutylammonium iodide and tetrapentylammonium iodide, whilst 2,6-di-tert- butylpyridine was used as a standard. The reduced mobilities measured for the test halides are in concordance with previously obtained ion mobility spectrometry-mass spectrometry data.

15.
J Am Soc Mass Spectrom ; 21(9): 1565-72, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20605730

RESUMEN

This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M](+*) and protonated [M + H](+) molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O(2)](+*), which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M](+*). Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forming a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M](+*) typically had a higher intensity than the protonated molecule [M + H](+). Interestingly, the latter drifts slower than the radical cation [M](+*), which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr.


Asunto(s)
Cationes/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Presión Atmosférica , Hexanos/química , Naftoles/química , Oxígeno/química , Fotoquímica/métodos , Piridinas/química , Solventes/química , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA