Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 105: 102056, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34303515

RESUMEN

Alexandrium catenella is a harmful algal bloom (HAB)-forming dinoflagellate that causes significant damage to the cultivation and harvest of shellfish due to its synthesis of paralytic shellfish toxins.  To evaluate the potential for macroalgae aquaculture to mitigate A. catenella blooms, we determined the effects of three cultivable macroalgae - Saccharina latissima (sugar kelp), Chondrus crispus (Irish moss), and Ulva spp. - on A. catenella in culture- and field-based experiments.  Co-culture growth assays of A. catenella exposed to environmentally realistic concentrations of each macroalgae showed that all species except low levels of C. crispus caused cell lysis and significant reductions in A. catenella densities relative to control treatments of 17-74% in 2-3 days and 42-96% in ~one week (p<0.05 for all assays). In a toxin accumulation experiment, S. latissima significantly lessened (p<0.05) saxitoxin (STX) accumulation in blue mussels (Mytilus edulis), keeping levels (71.80±1.98 µg STX 100 g-1) below US closure limits (80 µg STX 100 g-1) compared to the untreated control (93.47±8.11 µg STX 100 g-1). Bottle incubations of field-collected, bloom populations of A. catenella experienced significant reductions in cell densities of up to 95% when exposed to aquaculture concentrations of all three macroalgae (p<0.005 for all). The stocking of aquacultured S. latissima within mesocosms containing a bloom population of A. catenella (initial density: 3.2 × 104 cells L-1) reduced the population of A. catenella by 73% over 48 h (p<0.005) while Ulva addition caused a 54% reduction in A. catenella over 96 h (p<0.01).  Among the three seaweeds, their ordered ability to inhibit A. catenella was S. latissima > Ulva spp. > C. crispus. Seaweeds' primary anti-A. catenella activity were allelopathic, while nutrient competition, pH elevation, and macroalgae-attached bacteria may have played a contributory role in some experiments. Collectively, these results suggest that the integration of macroalgae with shellfish-centric aquaculture establishments should be considered as a non-invasive, environmentally friendly, and potentially profit-generating measure to mitigate A. catenella-caused damage to the shellfish aquaculture industry.


Asunto(s)
Bivalvos , Dinoflagelados , Algas Marinas , Animales , Floraciones de Algas Nocivas , Saxitoxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA