Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 178(15): 4661-9, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8755898

RESUMEN

Molecular characterization of the avrBs2 locus from Xanthomonas campestris pv. vesicatoria has revealed that expression of this gene triggers disease resistance in Bs2 pepper (Capsicum annuum) plants and contributes to virulence of the pathogen. Deletion analysis and site-directed mutagenesis established the avrBs2 gene as a 2,190-bp open reading frame encoding a putative 80.1-kDa protein. Two classes of Xanthomonas pathogens evading Bs2 host resistance and displaying reduced fitness were found to be specifically mutated in avrBs2. Members of one class contained a 5-bp insertion, while the second class was distinguished by a divergent 3' region of avrBs2; both mutant classes were complemented in trans by a plasmid-borne copy of avrBs2. A divergent avrBs2 homolog was cloned from the Brassica pathogen X. campestris pv. campestris. The predicted AvrBs2 proteins from the two Xanthomonas pathovars were strongly conserved and had predicted sequence similarity with both Agrobacterium tumefaciens agrocinopine synthase and Escherichia coli UgpQ, two enzymes involved in the synthesis or hydrolysis of phosphodiester linkages. On the basis of homology with agrocinopine synthase and UgpQ and the dual phenotype of avirulence and virulence, several models for the function of AvrBs2 are proposed.


Asunto(s)
Mutación , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidad , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Capsicum/microbiología , Cartilla de ADN/genética , ADN Bacteriano/genética , Genes Bacterianos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta , Fenotipo , Plantas Medicinales , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Virulencia/genética
2.
Plant J ; 4(6): 1011-22, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7506607

RESUMEN

A tobacco cDNA clone (pCNT1) was characterized that encodes an extensin apoprotein almost entirely composed of the repeats Ser-Pro4(-Lys2), Pro-Tyr2-Pro2-His and Thr-Pro-Val-Tyr-Lys. In healthy plants extensin transcripts are abundant in the roots, less prevalent in the stem and rare in the leaves. In leaves extensin mRNA is induced by wounding, ethylene or virus infection. Tobacco was transformed with pCNT1 cDNA coupled in sense or antisense orientation to the CaMV 35S promoter. Analysis of transgenic plants that over- or underexpressed pCNT1 mRNA demonstrated that the encoded protein constituted the majority of hydroxyproline-rich glycoproteins in roots, stems and leaves. The pCNT1-encoded protein contained at least 50% of total hydroxyproline present in these organs and was abundant in the soluble protein fraction of stems and roots as well as in the cell wall of stem vascular bundles. Analysis of transgenic plants expressing sense or antisense extensin gene constructs showed no correlation between total hydroxyproline concentration or soluble HRGP content and plant development.


Asunto(s)
Glicoproteínas/química , Nicotiana/genética , Proteínas de Plantas/química , Plantas Tóxicas , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , ADN , Epítopos/metabolismo , Regulación de la Expresión Génica , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Hidroxiprolina/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN sin Sentido/biosíntesis , ARN Mensajero/biosíntesis
3.
Plant Physiol ; 102(3): 891-901, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7506427

RESUMEN

Antisera raised against the major hydroxyproline-rich glycoprotein (HRGP) in carrot (Daucus carota L.) taproot, extensin-1, and a minor HRGP, extensin-2, were characterized by western blot analysis, enzyme-linked immunosorbent assay, and periodate oxidation and found to be directed against carbohydrate epitopes shared by both glycoproteins. The anti-extensin-1 antibodies (gE1) target periodate-sensitive epitopes and may recognize the terminal alpha-1,3-arabinoside of extensin-1. The anti-extensin-2 antibodies (gE2) recognize periodate-insensitive epitopes, possibly binding the reducing, internal beta-1,2-arabinosides on the carbohydrate side chains. Despite the cross-reactivity of these antibodies, immunolocalization studies of carrot taproot and green bean (Phaseolus vulgaris L.) leaf tissues reveal a spatial segregation of gE1- and gE2-labeling patterns. The gE1 antibodies bind only to the cellulose-rich region of the cell wall (J.P. Staehelin and L.A. Stafstrom [1988] Planta 174: 321-332), whereas gE2 labeling is restricted to the expanded middle lamella at three cell junctions. Periodate oxidation of nonosmicated, thin-sectioned tissue abolishes gE1 labeling but leads to labeling of the entire cell wall by gE2, presumably as a result of unmasking cryptic epitopes on extensin-1 in the cellulose layer. Purified extensin-2 protein is more efficient than extensin-1 protein at agglutinating avirulent Pseudomonas strains lacking extracellular polysaccharide. Our results indicate that extensin-2 does not form a heterologous HRGP network with extensin-1 and that, in contrast to extensin-1, which appears to serve a structural role, extensin-2 could participate in passive defense responses against phytopathogenic bacteria.


Asunto(s)
Epítopos/análisis , Fabaceae/citología , Glicoproteínas/análisis , Proteínas de Plantas/análisis , Plantas Medicinales , Verduras/citología , Pruebas de Aglutinación , Anticuerpos , Arabinosa/análisis , Western Blotting , Secuencia de Carbohidratos , Pared Celular/ultraestructura , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Fabaceae/inmunología , Fabaceae/ultraestructura , Técnica del Anticuerpo Fluorescente , Glicoproteínas/química , Glicoproteínas/inmunología , Uniones Intercelulares/ultraestructura , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Oligosacáridos/análisis , Oligosacáridos/química , Pseudomonas , Verduras/inmunología , Verduras/ultraestructura
4.
J Cell Biol ; 112(4): 589-602, 1991 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1993733

RESUMEN

The Golgi apparatus of plant cells is the site of assembly of glycoproteins, proteoglycans, and complex polysaccharides, but little is known about how the different assembly pathways are organized within the Golgi stacks. To study these questions we have employed immunocytochemical techniques and antibodies raised against the hydroxyproline-rich cell wall glycoprotein, extensin, and two types of complex polysaccharides, an acidic pectic polysaccharide known as rhamnogalacturonan I (RG-I), and the neutral hemicellulose, xyloglucan (XG). Our micrographs demonstrate that individual Golgi stacks can process simultaneously glycoproteins and complex polysaccharides. O-linked arabinosylation of the hydroxyproline residues of extensin occurs in cis-cisternae, and glycosylated molecules pass through all cisternae before they are packaged into secretory vesicles in the monensin-sensitive, trans-Golgi network. In contrast, in root tip cortical parenchyma cells, the anti-RG-I and the anti-XG antibodies are shown to bind to complementary subsets of Golgi cisternae, and several lines of indirect evidence suggest that these complex polysaccharides may also exit from different cisternae. Thus, RG-I type polysaccharides appear to be synthesized in cis- and medial cisternae, and have the potential to leave from a monensin-insensitive, medial cisternal compartment. The labeling pattern for XG suggests that it is assembled in trans-Golgi cisternae and departs from the monensin-sensitive trans-Golgi network. This physical separation of the synthesis/secretion pathways of major categories of complex polysaccharides may prevent the synthesis of mixed polysaccharides, and provides a means for producing secretory vesicles that can be targeted to different cell wall domains.


Asunto(s)
Pared Celular/metabolismo , Glucanos , Glicoproteínas/biosíntesis , Aparato de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Polisacáridos/biosíntesis , Xilanos , Secuencia de Carbohidratos , Aparato de Golgi/efectos de los fármacos , Inmunohistoquímica , Datos de Secuencia Molecular , Monensina/farmacología , Pectinas/biosíntesis , Plantas/ultraestructura , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA