Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 19, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29296020

RESUMEN

Metagenomic sequencing provides a window into microbial community structure and metabolic potential; however, linking these data to exogenous metabolites that microorganisms process and produce (the exometabolome) remains challenging. Previously, we observed strong exometabolite niche partitioning among bacterial isolates from biological soil crust (biocrust). Here we examine native biocrust to determine if these patterns are reproduced in the environment. Overall, most soil metabolites display the expected relationship (positive or negative correlation) with four dominant bacteria following a wetting event and across biocrust developmental stages. For metabolites that were previously found to be consumed by an isolate, 70% are negatively correlated with the abundance of the isolate's closest matching environmental relative in situ, whereas for released metabolites, 67% were positively correlated. Our results demonstrate that metabolite profiling, shotgun sequencing and exometabolomics may be successfully integrated to functionally link microbial community structure with environmental chemistry in biocrust.


Asunto(s)
Bacterias/metabolismo , Ecosistema , Metabolómica/métodos , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Metagenoma/genética , Dinámica Poblacional , Análisis de Secuencia de ADN
2.
Dev Cell ; 42(2): 156-169.e5, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28743002

RESUMEN

Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Heterocromatina/metabolismo , Histona Demetilasas/metabolismo , Animales , Biocatálisis , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Efectos de la Posición Cromosómica/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Fertilidad/genética , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutación/genética , Dominios Proteicos , Transcripción Genética
3.
Elife ; 52016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27514026

RESUMEN

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.


Asunto(s)
Proteínas Cromosómicas no Histona/análisis , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Heterocromatina/química , Animales , Homólogo de la Proteína Chromobox 5 , Regulación de la Expresión Génica , Análisis Espacio-Temporal
4.
Proc Natl Acad Sci U S A ; 109(2): 443-8, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22184222

RESUMEN

The concept of DNA "repair centers" and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 µm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation.


Asunto(s)
Neoplasias de la Mama/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Cultivadas , Reparación del ADN/efectos de la radiación , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Modelos Biológicos , Medición de Riesgo , Proteína 1 de Unión al Supresor Tumoral P53
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA