Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 251(0): 573-586, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38770842

RESUMEN

Studying larger nucleophiles in bimolecular nucleophilic substitution (SN2) reactions bridges the gap from simple model systems to those relevant to organic chemistry. Therefore, we investigated the reaction dynamics between the methoxy anion (CH3O-) and iodomethane (CH3I) in our crossed-beam setup combined with velocity map imaging at the four collision energies 0.4, 0.7, 1.2, and 1.6 eV. We find the two ionic products I- and CH2I-, which can be attributed to the SN2 and proton transfer channels, respectively. The proton transfer channel progresses in a previously observed fashion from indirect to direct scattering with increasing collision energy. Interestingly, the SN2 channel exhibits direct dynamics already at low collision energies. Both the direct stripping, leading to forward scattering, and the direct rebound mechanism, leading to backward scattering into high angles, are observed.

2.
Phys Chem Chem Phys ; 25(28): 18711-18719, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409391

RESUMEN

The competition between the bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) reaction and their intrinsic reactivity is of key interest in organic chemistry. To investigate the effect of suppressing the E2 pathway on SN2 reactivity, we compared the reactions F- + CH3CH2I and F- + CF3CH2I. Differential cross-sections have been measured in a crossed-beam setup combined with velocity map imaging, giving insight into the underlying mechanisms of the individual pathways. Additionally, we employed a selected-ion flow tube to obtain reaction rates and high-level ab initio computations to characterize the different reaction pathways and product channels. The fluorination of the ß-carbon not only suppresses the E2-reaction but opens up additional channels involving the abstraction of fluorine. The overall SN2 reactivity is reduced compared to the non-fluorinated iodoethane. This reduction is presumably due to the competition with the highly reactive channels forming FHF- and CF2CI-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA