Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Biotechnol ; 88: 103147, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833915

RESUMEN

Plant natural products have been an important source of medicinal molecules since ancient times. To gain access to the whole diversity of these molecules for pharmaceutical applications, it is important to understand their biosynthetic origins. Whilst co-expression is a reliable tool for identifying gene candidates, a variety of complementary methods can aid in screening or refining candidate selection. Here, we review recently employed plant biosynthetic pathway discovery approaches, and highlight future directions in the field.


Asunto(s)
Productos Biológicos , Productos Biológicos/metabolismo , Descubrimiento de Drogas , Vías Biosintéticas , Plantas/metabolismo , Plantas/genética
2.
Proc Natl Acad Sci U S A ; 119(21): e2203890119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35584121

RESUMEN

Most macro- and polycyclic Euphorbiaceae diterpenoids derive from the common C20 precursor casbene. While the biosynthetic pathway from casbene to the lathyrane jolkinol C is characterized, pathways to other more complex classes of bioactive diterpenoids remain to be elucidated. A metabolomics-guided transcriptomic approach and a genomics approach that led to the discovery of two casbene-derived diterpenoid gene clusters yielded a total of 68 candidate genes that were transiently expressed in Nicotiana benthamiana for activity toward jolkinol C and other lathyranes. We report two short-chain dehydrogenases/reductases (SDRs), identified by RNA sequencing to be highly expressed in Euphorbia peplus latex. One of these, EpSDR-5, is a C3-ketoreductase, converting jolkinol C to the lathyrane jolkinol E. Gene function of EpSDR-5 was further confirmed by heterologous expression in Saccharomyces cerevisiae. To investigate the in vivo role of EpSDR-5, we established virus-induced gene silencing (VIGS) in E. peplus, resulting in a significant reduction in jatrophanes and a corresponding increase in ingenanes. VIGS of Casbene Synthase results in a major reduction in both jatrophanes and ingenanes, the two most abundant classes of E. peplus diterpenoids. VIGS of CYP71D365 had a similar effect, consistent with the previously determined role of this gene in the pathway to jolkinol C. These results point to jolkinol C being a branch point intermediate in the pathways to ingenanes and jatrophanes with EpSDR-5 responsible for the first step from jolkinol C to jatrophane production.


Asunto(s)
Diterpenos , Euphorbia , Silenciador del Gen , Diterpenos/farmacología , Euphorbia/genética , Euphorbia/metabolismo , Estudios de Asociación Genética , Metabolómica , Estructura Molecular
3.
Plant Reprod ; 32(3): 275-289, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30903284

RESUMEN

KEY MESSAGE: Reproduction in triploid plants is important for understanding polyploid population dynamics. We show that genetically identical reciprocal F1 hybrid triploids can display transgenerational epigenetic effects on viable F2 seed development. The success or failure of reproductive outcomes from intra-species crosses between plants of different ploidy levels is an important factor in flowering plant evolution and crop breeding. However, the effects of inter-ploidy cross directions on F1 hybrid offspring fitness are poorly understood. In Arabidopsis thaliana, hybridization between diploid and tetraploid plants can produce viable F1 triploid plants. When selfed, such F1 triploid plants act as aneuploid gamete production "machines" where the vast majority of gametes generated are aneuploid which, following sexual reproduction, can generate aneuploid swarms of F2 progeny (Henry et al. 2009). There is potential for some aneuploids to cause gametophyte abortion and/or F2 seed abortion (Henry et al. 2009). In this study, we analyse the reproductive success of 178 self-fertilized inter-accession F1 hybrid triploids and demonstrate that the proportions of aborted or normally developed F2 seeds from the selfed F1 triploids depend upon a combination of natural variation and cross direction, with strong interaction between these factors. Single-seed ploidy analysis indicates that the embryonic DNA content of phenotypically normal F2 seeds is highly variable and that these DNA content distributions are also affected by genotype and cross direction. Notably, genetically identical reciprocal F1 hybrid triploids display grandparent-of-origin effects on F2 seed set, and hence on the ability to tolerate aneuploidy in F2 seed. There are differences between reciprocal F1 hybrid triploids regarding the proportions of normal and aborted F2 seeds generated, and also for the DNA content averages and distributions of the F2 seeds. To identify genetic variation for tolerance of aneuploidy in F2 seeds, we carried out a GWAS which identified two SNPs, termed MOT and POT, which represent candidate loci for genetic control of the proportion of normal F2 seeds obtained from selfed F1 triploids. Parental and grandparental effects on F2 seeds obtained from selfed F1 triploids can have transgenerational consequences for asymmetric gene flow, emergence of novel genotypes in polyploid populations, and for control of F2 seed set in triploid crops.


Asunto(s)
Arabidopsis/genética , Genoma de Planta/genética , Ploidias , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Evolución Biológica , Diploidia , Epigenómica , Genotipo , Células Germinativas de las Plantas , Hibridación Genética , Magnoliopsida , Fenotipo , Polinización , Reproducción , Autofecundación , Triploidía
4.
BMC Evol Biol ; 11: 47, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21332978

RESUMEN

BACKGROUND: All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. RESULTS: This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species lineages. We demonstrate that lineage-specific genes have high tissue specificity and low expression levels across multiple tissues and developmental stages. Finally, stress responsiveness is identified as a distinct feature of Brassicaceae-specific genes; where these LSGs are enriched for genes responsive to a wide range of abiotic stresses. CONCLUSION: Improving our understanding of the origins of lineage-specific genes is key to gaining insights regarding how novel genes can arise and acquire functionality in different lineages. This study comprehensively identifies all of the Brassicaceae-specific genes in Arabidopsis thaliana and identifies how the majority of such lineage-specific genes have arisen. The analysis allows the relative importance (and prevalence) of different evolutionary routes to the genesis of novel ORFs within lineages to be assessed. Insights regarding the functional roles of lineage-specific genes are further advanced through identification of enrichment for stress responsiveness in lineage-specific genes, highlighting their likely importance for environmental adaptation strategies.


Asunto(s)
Arabidopsis/genética , Brassicaceae/genética , Evolución Molecular , Genes de Plantas , Elementos Transponibles de ADN , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo Genético , Alineación de Secuencia , Análisis de Secuencia de ADN , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA