Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39008401

RESUMEN

The spatial distribution of a transduction efficiency over the air-coupled probe surface was proposed as a convenient tool for the probe integrity inspection. In this research, a parabolic reflector is used for passive focusing of the acoustic wave on the surface of inspected probe. Therefore, no additional transducer is required for inspection: probe is used for self-inspection. This approach allows to avoid the expensive focused transducer and replaces it by the same-type air-coupled transducers as probe under test. Moreover, the use of the parabolic mirror for focusing is frequency-independent; therefore, such approach allows to inspect a wide range of the probes. Spread spectrum signals were used for excitation to improve the SNR and bandwidth coverage. The results of the experimental measurements of air-coupled transducer sensitivity map with natural and artificial defects implemented have been presented. Comparison with previously proposed techniques is given. It was found that defects presence distorts the focused beam, creating large sidelobes. Therefore, sensitivity map obtained with the proposed technique is lower quality than with previously proposed techniques. Beam profile measurements using a miniature microphone have been presented. Aperture-limiting mask has been proposed to reduce the sidelobes arising due to defects presence and resulting measurements quality has been improved.

2.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242705

RESUMEN

Microbubble (MB)- and ultrasound (US)-facilitated intracellular Ca2+ delivery, known as sonoporation (SP), is a promising anticancer treatment modality, since it allows a spatio-temporally controllable and side-effect-free alternative to conventional chemotherapy. The current study provides extensive evidence that a 5 mM concentration of Ca2+ in combination with US alone or US and Sonovue MBs can be an alternative to the conventional 20 nM concentration of the anticancer drug bleomycin (BLM). Ca2+ application together with SP induces a similar level of death in Chinese hamster ovary cells to the combination of BLM and SP but does not cause systemic toxicity, as is inherent to conventional anticancer drugs. In addition, Ca2+ delivery via SP alters three vital characteristics essential for viable cells: membrane permeability, metabolic activity and proliferation ability. Most importantly, Ca2+ delivery via SP elicits sudden cell death-occurring within 15 min-which remains similar during 24-72 h and 6 d periods. The extensive study of US waves side-scattered by MBs led to the quantification of the cavitation dose (CD) separately for subharmonics, ultraharmonics, harmonics and broadband noise (up to 4 MHz). The CD was suitable for the prognostication of the cytotoxic efficiency of both anticancer agents, Ca2+ and BLM, as was indicated by an overall high (R2 ≥ 0.8) correlation (22 pairs in total). These extensive analytical data imply that a broad range of frequencies are applicable for the feedback-loop control of the process of US-mediated Ca2+ or BLM delivery, successively leading to the eventual standardization of the protocols for the sonotransfer of anticancer agents as well as the establishment of a universal cavitation dosimetry model.

3.
Ultrasonics ; 133: 107025, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37159982

RESUMEN

An acoustic field distribution investigation in air requires a small receiving sensor. Needle hydrophones seem to be an attractive solution, and it has previously been demonstrated that needle hydrophones designed for use in water can be used in air. The metrology problem is that an absolute sensitivity calibration is needed, because needle hydrophones are not characterized in air, especially for frequencies below 1 MHz, which is of interest for air-coupled ultrasound. Conventional, three-transducer/microphone reciprocity calibration requires measurements to be done in the far field. However, when transducer diameter is large and the frequency is high, the required measurement distance becomes very large: 3 m for a 20 mm source, transmitting at 1 MHz. Large propagation distance leads to high attenuation and nonlinear effects in air propagation, and distortion and losses accumulate. Small needle hydrophones have low sensitivity, so that high excitation amplitudes would be required, which can lead to transducer heating and increase nonlinearity effects. A derivative of the three-transducer reciprocity calibration method is proposed, where a large aperture transducer is focused onto a hydrophone, using hybrid of plane wave and spherical wave reciprocity. Use of a focused source minimizes the frequency-dependent diffraction effects, and the spherical wave approximation is valid at the focal distance, and low level excitation signals can be used. Focusing is accomplished using a parabolic off-axis mirror. Calibration is in transmission, which reduces the complexity of the electrical measurements. The corresponding equations have been derived for this setup. Calibration of the transducer and needle hydrophone absolute sensitivity is obtained.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36331636

RESUMEN

Miniature microphones suitable for measurements of ultrasonic wave field scans in air are expensive or lack sensitivity or do not cover the range beyond 100 kHz. It is essential that they are too large for such fields measurements. The use of a ferroelectret (FE) film is proposed to construct a miniature, needle-style 0.5-mm-diameter sensitive element ultrasonic microphone. FE has an acoustic impedance much closer to that of air compared with other alternatives and is low cost and easy to process. The performance of the microphone was evaluated by measuring the sensitivity area map, directivity, ac response, and calibrating the absolute sensitivity. Another novel contribution here is that the sensitivity map was obtained by scanning the focused beam of a laser diode over the microphone surface, producing thermoelastic ultrasound excitation. The electroacoustic response of the microphone served as a sensitivity indicator at a scan spot. Micrometer scale granularity of the FE sensitivity was revealed in the sensitivity map images. It was also demonstrated that the relative ac response of the microphone can be obtained using pulsed laser beam thermoelastic excitation of the whole microphone surface with a laser diode. The absolute sensitivity calibration was done using the hybrid three-transducer reciprocity technique. A large aperture, air coupled transducer beam was focused onto the microphone surface, using the parabolic off-axis mirror. This measurement validated the laser ac response measurements. The FE microphone performance was compared with biaxially stretched polyvinylidene difluoride (PVDF) microphone of the same construction.


Asunto(s)
Rayos Láser , Transductores , Diseño de Equipo , Ultrasonografía , Calibración
5.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36298262

RESUMEN

Ultrasound imaging is a wide research field, covering areas from wave propagation physics, sensors and front-end electronics to image reconstruction algorithms and software [...].


Asunto(s)
Algoritmos , Programas Informáticos , Ultrasonografía/métodos , Procesamiento de Imagen Asistido por Computador , Electrónica
6.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339095

RESUMEN

Air-coupled ultrasonic probes require a special design approach and handling due to the significant mismatch to the air. Outer matching layers have to be soft so can be easily damaged and excitation voltages might cause the degradation of electrodes or bonding between the layers. Integrity inspection is desired during design, manufacturing, and exploitation. Spatial distribution of a transduction efficiency over piezoelement surface is proposed as a convenient means for the air-coupled probe integrity inspection. Focused transducer of similar center frequency is used to scan the surface of the inspected probe. However, such approach creates a challenge, i.e., area of the scanning beam is much smaller than the total receiving area of the inspected probe, therefore, contrast and imaging resolution are significantly degraded. Masking aperture made from cardboard and felt, placed at the focal point was proposed as solution. Far-range sidelobes were suppressed down to the noise floor (-50 dB) and the near-range sidelobes were reduced down to -17 dB. The proposed modification allows to use a similar frequency focused transducer. Probe integrity inspection can be carried out at significantly enhanced contrast and lateral resolution. Natural and artificial defects can be detected by the use of the proposed method.

7.
IEEE Trans Ultrason Ferroelectr Freq Control ; 66(11): 1691-1698, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31352341

RESUMEN

Time delay or the time-of-flight is a most frequently used parameter in many ultrasonic applications. Delay estimation is based on the sampled signal, so the resolution is limited by the sampling grid. Higher accuracy is available if the signal-to-noise ratio is high, then the subsample estimate is desired. Techniques used for subsample interpolation suffer from bias error. Time-of-flight estimation that is free from bias errors is required. The proposed subsample estimation works in the frequency domain; it is based on the cross-correlation peak temporal position. The phase of the cross-correlation frequency response becomes linear thanks to multiplication by the complex conjugate, and its inclination angle is proportional to the delay. Then, subsample interpolation becomes free from the bias error. Twelve algorithmic implementations of this technique have been proposed in this paper. All algorithmic implementations have been analyzed for bias and random errors using simulation and MATLAB codes are given as supplementary material. Comparison with best-performing interpolation techniques (spline approximation, cosine interpolation, carrier phase) is given for both bias and random errors. It was demonstrated that frequency domain interpolation has no bias errors, and noise performance is better or comparable to other subsample estimation techniques. Weighted regression using L2 norm minimization has the best performance: total errors (bias and random) are within 3% of theoretical lower bound.

8.
Ultrasonics ; 83: 68-79, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28673662

RESUMEN

The aim of this work is the non-destructive automatic mechanical characterization of nanoparticles doped composites using ultrasound in order to understand and control the dispersion of the dopant nanoparticles in the final product. We present a method which is able to measure the elastic constants of composites (Youngs, Bulk, Shear Modulus and Poissons ratio), in addition to other parameters as density, sound velocity and thickness, providing information of the nanoparticles dispersion in the samples. All results are obtained with a single ultrasonic measure at each point of the samples' surface in an immersion setup with both pulse-echo and through-transmission measurements simultaneously, obtaining detailed information for all the samples' surface in a XY scanning. All the analysis is performed automatically, that is, no manual correction or adjustment is needed at any stage of the process. To validate the results, a polyester based resin has been analyzed with different concentrations of graphene nanoparticles as dopant. The method has shown to be very accurate and reliable. The resolution of the values obtained for the elastic constants is limited by the resolution in the velocities measurements, for which we have achieved a resolution in the order of cm/s, thus providing very accurate measurements of the elastic constants.

9.
Ultrasonics ; 76: 154-165, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28103484

RESUMEN

ToF estimation errors for two reflections have been analyzed. Case of high signal-to-noise ratio was assumed, when accuracy of the order of few nanoseconds can be achieved. It was indicated that additional bias errors are introduced in ToF estimator when other reflection is in close temporal proximity to the reflection of interest. Research demonstrates that iterative deconvolution does not improve the accuracy significantly. Novel technique is suggested which addresses this issue by means of a reiterative deconvolution. Simulation and experimental performance evaluation is presented. Bias error quickly diminishes with every reiteration when using new technique and is below the other errors after few reiterations.

10.
Ultrasonics ; 59: 79-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25682293

RESUMEN

Application of half bridge topology for ultrasonic transducer excitation using long pulse trains is presented. The novelty of the approach is the high speed solution for a high side drive. A commercially available high speed digital isolator and a high speed MOSFET driver were combined to give the possibility to deliver fast driving signals to a high side N-channel MOSFET. The experimental investigation indicates that the output amplitude of the fundamental harmonic can reach 624 Vp-p for light loads and 552 Vp-p when driving 50 Ω loads. The operation frequency at such voltages can reach 10 MHz for unloaded or 50 Ω load condition and 6 MHz when driving capacitive 3000 pF loads. The output impedance is 13 Ω for voltages below 500 Vp-p and 16-26 Ω for voltages 500 Vp-p and above.

11.
Ultrasonics ; 53(7): 1344-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23648211

RESUMEN

Novel excitation technique is suggested which allows to reduce the correlation function sidelobes in case of narrowband channel. Application is planned for time of flight estimation using air coupled narrowband transducers. Time of flight is estimated by using the correlation function peak position. Narrowband signal has high level of correlation function sidelobes and therefore large signal to noise ratio cannot be fully exploited. Our investigation aimed to reduce the sidelobes by optimizing the signal. Novelty of the approach is that trains of arbitrary width and position square pulses are used. Such signals are easy to generate and to simulate in digital domain. The excitation signal spectrum was allowed to span beyond the passband, improving the envelope bandwidth in such way. The signal energy loss is caused by the attenuation of the out-of-band portion of the signal. Optimal balance between the energy loss and the sidelobes reduction had to be found. To predict the signal performance, the AC response of the transmission channel was measured and then used in simulation to predict the candidate signal's performance: the expected sidelobes' level and the energy. Monte Carlo technique was used to generate the candidate signals' parameters for the simulation. The relative noise margin was suggested as optimum criteria to balance the loss of the energy and the sidelobes reduction. Performance of the optimal signals obtained in simulation was verified experimentally. It was concluded that reduction of the sidelobes' is possible even for narrowband channel if some energy loss can be tolerated. An increase of 40% in relative noise margin, compared to the same length CW burst signals was achieved.

12.
Ultrasonics ; 53(1): 225-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22742963

RESUMEN

The design of high voltage pulser for air coupled ultrasound imaging is presented. It is dedicated for air-coupled ultrasound applications when piezoelectric transducer design is used. Two identical N-channel MOSFETs are used together with 1200V high and low side driver IC. Simple driving pulses' delay and skew circuit is used to reduce the cross-conduction. Analysis of switch peak current and channel resistance relation to maximum operation frequency and load capacitance is given. PSPICE simulation was used to analyze the gate driver resistance, gate pulse skew, pulse amplitude influence on energy consumption when loaded by capacitive load. Experimental investigation was verified against simulation and theoretical predictions. For 500pF capacitance, which is most common for piezoelectric air coupled transducers, pulser consumes 650µJ at 1kV pulse and 4µJ at 50V. Pulser is capable to produce up to 1MHz pulse trains with positive 50V-1kV pulses with up to 10A peak output current. When loaded by 200kHz transducer at 1kV pulse amplitude rise time is 40ns and fall time is 32ns which fully satisfies desired 1MHz bandwidth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA