Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 94(suppl 1): e20210800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35442298

RESUMEN

The formation of dense water masses at polar regions has been largely influenced by climate changes arising from global warming. In this context, based on ensemble simulations with a coupled model we evaluate the meridional shift of a climate signal (i.e., a cold and fresh water input pulse generated from melting of positive Antarctic sea ice (ASI) extremes) towards the Tropical Atlantic Ocean (TAO). This oceanic signal propagated from Southern Ocean towards the equator through the upper layers due to an increase in its buoyance. Its northward shift has given by the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) flows, that inject cold and fresh mode/intermediate waters from into subtropical basin. The signal has reached low latitudes through the equatorial upwelling and spreads out southwards, through the upper branch of southern subtropical gyre. We concluded that 10 years of coupled simulations was enough time to propagate the climate signal generated by ASI positive extremes melting, which reached TOA around 2 year later. The oceanic connection between Southern Ocean and TAO is indeed established within the timescale analyzed in the study (10 years). Nonetheless, the period needed to completely dissipate the disturbance generated from ASI seems to be longer.


Asunto(s)
Agua Dulce , Cubierta de Hielo , Regiones Antárticas , Océano Atlántico , Agua
3.
Sci Rep ; 11(1): 10648, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017014

RESUMEN

Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean-atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2 source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m-2 day-1, averaged over the sampling period. The CO2 transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean-atmosphere fluxes. The ocean-atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean-atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA