Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Osteoarthr Cartil Open ; 4(3): 100273, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36474938

RESUMEN

Objectives: To compare joint regeneration in adult newts (N. viridescens) upon both newly established surgical removal and previously reported enzymatic destruction of articular cartilage to identify molecular factors and functionally analyze potentially important regulators involved in osteoarthritis (OA). Methods: Damage of knee cartilage was induced by either intra-articular injection of collagenase or by surgical removal of articular cartilage as a novel additional approach. Changes over time were clinically and histologically analyzed and studied by cDNA microarray analysis, real-time quantitative PCR, immunohistochemistry and functional assays to identify relevant candidate genes and determine their impact on regeneration. Results: Several genes were found to be up-regulated during regeneration, including extracellular matrix components and mediators of cell-matrix interactions, genes encoding for cellular components, for cell and tissue homeostasis and tissue remodelling, for cellular processes as well as signalling molecules. A high activity and diversity of transcription was detected on days 10 and 20, especially in the surgical model. 10 candidate genes were further analyzed. The matricellular protein tenascin C (TN-C) attracted our particular attention due to its prominent up-regulation during regeneration in both models and at different time points. Conclusions: Newts are able to regenerate OA-like articular cartilage damage ad integrum both after enzymatic and mechanical injury. Most of the genes involved in amphibians are also known to be operative in humans and other mammals, especially matricellular factors interfering with optimized matrix remodelling. Our results stress the necessity to elucidate mechanistic differences in different species potentially using identical molecules but with different functional results.

2.
Virol J ; 7: 108, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20504340

RESUMEN

BACKGROUND: The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. RESULTS: Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1) as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1) strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1) virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK), a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD) located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. CONCLUSION: As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.


Asunto(s)
Caveolina 1/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Animales , Caveolina 1/genética , Línea Celular , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Unión Proteica , Alineación de Secuencia , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA