Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sustain Chem Eng ; 6(1): 668-678, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29333351

RESUMEN

In this work we report the effect of the hard block dianhydride structure on the overall properties of partially biobased semiaromatic polyimides. For the study, four polyimides were synthesized using aliphatic fatty dimer diamine (DD1) as the soft block and four different commercially available aromatic dianhydrides as the hard block: 4,4'-(4,4'-isopropylidenediphenoxy) bis(phthalic anhydride) (BPADA), 4,4'-oxidiphthalic anhydride (ODPA), 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA), and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA). The polymers synthesized were fully organo-soluble thermoplastic branched polyimides with glass transition temperatures close to room temperature. The detailed analysis took into account several aspects of the dianhydrides structure (planarity, rigidity, bridging group between the phtalimides, and electronic properties) and related them to the results obtained by differential scanning calorimetry, rheology, fluorescence and broadband dielectric spectroscopy. Moreover, the effects of physical parameters (crystallization and electronic interactions) on the relaxation behavior are discussed. Despite the presence of the bulky branched soft block given by the dimer diamine, all polyimides showed intermolecular charge transfer complexes, whose extent depends on the electronic properties of the dianhydride hard block. Furthermore, the results showed that polyimides containing flexible and bulky hard blocks turned out fully amorphous while the more rigid dianhydride (BPDA) led to a nanophase separated morphology with low degree of crystallinity resulting in constrained segmental relaxation with high effect on its mechanical response with the annealing time. This work represents the first detailed report on the development and characterization of polyimides based on a biobased fatty dimer diamine. The results highlight the potential of polymer property design by controlled engineering of the aromatic dianhydride blocks.

2.
Macromolecules ; 51(21): 8333-8345, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30662088

RESUMEN

We present a systematic study of the role of the aromatic dianhydride structure on the self-healing behavior of dimer diamine-based polyimides. By means of solid-state NMR and rheology, we studied the molecular and microscale dynamics of four polyimides comprising the same aliphatic branched diamine yet with variable dianhydride rigidities and correlated these to their macroscopic healing kinetics measured by tensile testing. Following the two-step kinetics of the healing process, we were able to differentiate and quantify the extent of mechanical strength recovery in each of the healing stages separately. Moreover, the detailed rheology and solid-state NMR allowed us to shed light on the role of the aromatic interactions and branches on the mechanical properties and mechanical integrity during macroscopic healing. The study reveals the relevance and interplay of primary and secondary interactions in the development of non-cross-linked strong and healing polymers able to maintain mechanical integrity during healing.

4.
Adv Mater ; 29(26)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28466515

RESUMEN

Self-healing polymers can significantly extend the service life of materials and structures by autonomously repairing damage. Intrinsic healing holds great promise as a design strategy to mitigate the risks of damage by delaying or preventing catastrophic failure. However, experimentally resolving the microscopic mechanisms of intrinsic repair has proven highly challenging. This work demonstrates how optical micromechanical mapping enables the quantitative imaging of these molecular-scale dynamics with high spatiotemporal resolution. This approach allows disentangling delocalized viscoplastic relaxation and localized cohesion-restoring rebonding processes that occur simultaneously upon damage to a self-healing polymer. Moreover, frequency- and temperature-dependent imaging provides a way to pinpoint the repair modes in the relaxation spectrum of the quiescent material. These results give rise to a complete picture of autonomous repair that will guide the rational design of improved self-healing materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA