Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150682

RESUMEN

Previous studies have demonstrated antiestrogenic and antiproliferative effects of these molecules in breast cancer cells. Notably, we have reported that pure synthetic glyceollins I and II act through various pathways, including ERα, FOXM1, AhR, and HIF pathways to inhibit cell proliferation and migration. In this study, the potential antitumor activity of glyceollins enriched in crude soybean extracts, obtained by solid fermentation with Aspergillus sojae, was investigated in vivo on MCF-7 breast cancer cells implanted in the chorioallantoic membrane of the chick egg and on ovariectomized nude mice. The first trial showed a substantial reduction in the migration of MCF-7 cells treated with the natural extracts. However, the natural extracts significantly reduced the estrogen-dependent growth of transplanted tumors in orally fed nude mice. Our results showed that natural soybean extracts slightly but significantly reduced estrogen-dependent growth of the transplanted tumors in orally fed nude mice. These results were confirmed by immunohistochemistry of Ki-67 and histone H3S10 phosphorylation (H3S10P), revealing lower expression of these proliferation markers in the transplanted tumors from mice fed with the fermented extracts. Additionally, compared to the control animals, we observed a lower expression of angiogenesis markers such as CD31 and CD34. Surprisingly, transcriptomic analysis of RNA from transplanted MCF-7 cells revealed no differential gene expression. These results may suggest that orally consumed natural glyceollins exert biological effects throughout the body, acting indirectly to reduce tumor angiogenesis and consequently tumor volume. Overall, our results indicate that glyceollins, elicited components of the soy origin, hold potential therapeutic applications for the prevention and treatment of breast cancer.

2.
Cell Commun Signal ; 15(1): 26, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28666461

RESUMEN

BACKGROUND: Estrogen receptors (ER) α and ß are found in both women and men in many tissues, where they have different functions, including having roles in cell proliferation and differentiation of the reproductive tract. In addition to estradiol (E2), a natural hormone, numerous compounds are able to bind ERs and modulate their activities. Among these compounds, phytoestrogens such as isoflavones, which are found in plants, are promising therapeutics for several pathologies. Glyceollins are second metabolites of isoflavones that are mainly produced in soybean in response to an elicitor. They have potentially therapeutic actions in breast cancer by reducing the proliferation of cancer cells. However, the molecular mechanisms driving these effects remain elusive. METHODS: First, to determine the proliferative or anti-proliferative effects of glyceollins, in vivo and in vitro approaches were used. The length of epithelial duct in mammary gland as well as uterotrophy after treatment by E2 and glyceollins and their effect on proliferation of different breast cell line were assessed. Secondly, the ability of glyceollin to activate ER was assessed by luciferase assay. Finally, to unravel molecular mechanisms involved by glyceollins, transcriptomic analysis was performed on MCF-7 breast cancer cells. RESULTS: In this study, we show that synthetic versions of glyceollin I and II exert anti-proliferative effects in vivo in mouse mammary glands and in vitro in different ER-positive and ER-negative breast cell lines. Using transcriptomic analysis, we produce for the first time an integrated view of gene regulation in response to glyceollins and reveal that these phytochemicals act through at least two major pathways. One pathway involving FOXM1 and ERα is directly linked to proliferation. The other involves the HIF family and reveals that stress is a potential factor in the anti-proliferative effects of glyceollins due to its role in increasing the expression of REDD1, an mTORC1 inhibitor. CONCLUSION: Overall, our study clearly shows that glyceollins exert anti-proliferative effects by reducing the expression of genes encoding cell cycle and mitosis-associated factors and biomarkers overexpressed in cancers and by increasing the expression of growth arrest-related genes. These results reinforce the therapeutic potential of glyceollins for breast cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Fitoestrógenos/farmacología , Pterocarpanos/farmacología , Animales , Estradiol/metabolismo , Femenino , Humanos , Células MCF-7 , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA