Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 3: CD008962, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32128761

RESUMEN

BACKGROUND: Shock wave therapy has seen widespread use since the 1990s to treat various musculoskeletal disorders including rotator cuff disease, but evidence of its efficacy remains equivocal. OBJECTIVES: To determine the benefits and harms of shock wave therapy for rotator cuff disease, with or without calcification, and to establish its usefulness in the context of other available treatment options. SEARCH METHODS: We searched Ovid MEDLINE, Ovid Embase, CENTRAL, ClinicalTrials.gov and the WHO ICTRP up to November 2019, with no restrictions on language. We reviewed the reference lists of retrieved trials to identify potentially relevant trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and controlled clinical trials (CCTs) that used quasi-randomised methods to allocate participants, investigating participants with rotator cuff disease with or without calcific deposits. We included trials of comparisons of extracorporeal or radial shock wave therapy versus any other intervention. Major outcomes were pain relief greater than 30%, mean pain score, function, patient-reported global assessment of treatment success, quality of life, number of participants experiencing adverse events and number of withdrawals due to adverse events. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies for inclusion, extracted data and assessed the certainty of evidence using GRADE. The primary comparison was shock wave therapy compared to placebo. MAIN RESULTS: Thirty-two trials (2281 participants) met our inclusion criteria. Most trials (25) included participants with rotator cuff disease and calcific deposits, five trials included participants with rotator cuff disease and no calcific deposits, and two trials included a mixed population of participants with and without calcific deposits. Twelve trials compared shock wave therapy to placebo, 11 trials compared high-dose shock wave therapy (0.2 mJ/mm² to 0.4 mJ/mm² and above) to low-dose shock wave therapy. Single trials compared shock wave therapy to ultrasound-guided glucocorticoid needling, ultrasound-guided hyaluronic acid injection, transcutaneous electric nerve stimulation (TENS), no treatment or exercise; dual session shock wave therapy to single session therapy; and different delivery methods of shock wave therapy. Our main comparison was shock wave therapy versus placebo and results are reported for the 3 month follow up. All trials were susceptible to bias; including selection (74%), performance (62%), detection (62%), and selective reporting (45%) biases. No trial measured participant-reported pain relief of 30%. However, in one trial (74 participants), at 3 months follow up, 14/34 participants reported pain relief of 50% or greater with shock wave therapy compared with 15/40 with placebo (risk ratio (RR) 1.10, 95% confidence interval (CI) 0.62 to 1.94); low-quality evidence (downgraded for bias and imprecision). Mean pain (0 to 10 scale, higher scores indicate more pain) was 3.02 points in the placebo group and 0.78 points better (0.17 better to 1.4 better; clinically important change was 1.5 points) with shock wave therapy (9 trials, 608 participants), moderate-quality evidence (downgraded for bias). Mean function (scale 0 to 100, higher scores indicate better function) was 66 points with placebo and 7.9 points better (1.6 better to 14 better, clinically important difference 10 points) with shock wave therapy (9 trials, 612 participants), moderate-quality evidence (downgraded for bias). Participant-reported success was reported by 58/150 people in shock wave therapy group compared with 35/137 people in placebo group (RR 1.59, 95% CI 0.87 to 2.91; 6 trials, 287 participants), low-quality evidence (downgraded for bias and imprecision). None of the trials measured quality of life. Withdrawal rate or adverse event rates may not differ between extracorporeal shock wave therapy and placebo, but we are uncertain due to the small number of events. There were 11/34 withdrawals in the extracorporeal shock wave therapy group compared with 13/40 withdrawals in the placebo group (RR 0.75, 95% CI 0.43 to 1.31; 7 trials, 581 participants) low-quality evidence (downgraded for bias and imprecision); and 41/156 adverse events with extracorporeal shock wave therapy compared with 10/139 adverse events in the placebo group (RR 3.61, 95% CI 2.00 to 6.52; 5 trials, 295 participants) low-quality evidence (downgraded for bias and imprecision). Subgroup analyses indicated that there were no between-group differences in pain and function outcomes in participants who did or did not have calcific deposits in the rotator cuff. AUTHORS' CONCLUSIONS: Based upon the currently available low- to moderate-certainty evidence, there were very few clinically important benefits of shock wave therapy, and uncertainty regarding its safety. Wide clinical diversity and varying treatment protocols means that we do not know whether or not some trials tested subtherapeutic doses, possibly underestimating any potential benefits. Further trials of extracorporeal shock wave therapy for rotator cuff disease should be based upon a strong rationale and consideration of whether or not they would alter the conclusions of this review. A standard dose and treatment protocol should be decided upon before further research is conducted. Development of a core set of outcomes for trials of rotator cuff disease and other shoulder disorders would also facilitate our ability to synthesise the evidence.


Asunto(s)
Calcinosis/terapia , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Enfermedades Musculares/terapia , Manguito de los Rotadores , Terapia por Ejercicio , Tratamiento con Ondas de Choque Extracorpóreas/efectos adversos , Glucocorticoides/administración & dosificación , Humanos , Ácido Hialurónico/administración & dosificación , Persona de Mediana Edad , Pacientes Desistentes del Tratamiento/estadística & datos numéricos , Ensayos Clínicos Controlados Aleatorios como Asunto , Dolor de Hombro/terapia , Estimulación Eléctrica Transcutánea del Nervio , Viscosuplementos/administración & dosificación
2.
Cochrane Database Syst Rev ; (6): CD012225, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27283591

RESUMEN

BACKGROUND: Management of rotator cuff disease may include use of electrotherapy modalities (also known as electrophysical agents), which aim to reduce pain and improve function via an increase in energy (electrical, sound, light, or thermal) into the body. Examples include therapeutic ultrasound, low-level laser therapy (LLLT), transcutaneous electrical nerve stimulation (TENS), and pulsed electromagnetic field therapy (PEMF). These modalities are usually delivered as components of a physical therapy intervention. This review is one of a series of reviews that form an update of the Cochrane review, 'Physiotherapy interventions for shoulder pain'. OBJECTIVES: To synthesise available evidence regarding the benefits and harms of electrotherapy modalities for the treatment of people with rotator cuff disease. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE (January 1966 to March 2015), Ovid EMBASE (January 1980 to March 2015), CINAHL Plus (EBSCOhost, January 1937 to March 2015), ClinicalTrials.gov and the WHO ICTRP clinical trials registries up to March 2015, unrestricted by language, and reviewed the reference lists of review articles and retrieved trials, to identify potentially relevant trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-randomised trials, including adults with rotator cuff disease (e.g. subacromial impingement syndrome, rotator cuff tendinitis, calcific tendinitis), and comparing any electrotherapy modality with placebo, no intervention, a different electrotherapy modality or any other intervention (e.g. glucocorticoid injection). Trials investigating whether electrotherapy modalities were more effective than placebo or no treatment, or were an effective addition to another physical therapy intervention (e.g. manual therapy or exercise) were the main comparisons of interest. Main outcomes of interest were overall pain, function, pain on motion, patient-reported global assessment of treatment success, quality of life and the number of participants experiencing adverse events. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, extracted the data, performed a risk of bias assessment and assessed the quality of the body of evidence for the main outcomes using the GRADE approach. MAIN RESULTS: We included 47 trials (2388 participants). Most trials (n = 43) included participants with rotator cuff disease without calcification (four trials included people with calcific tendinitis). Sixteen (34%) trials investigated the effect of an electrotherapy modality delivered in isolation. Only 23% were rated at low risk of allocation bias, and 49% were rated at low risk of both performance and detection bias (for self-reported outcomes). The trials were heterogeneous in terms of population, intervention and comparator, so none of the data could be combined in a meta-analysis.In one trial (61 participants; low quality evidence), pulsed therapeutic ultrasound (three to five times a week for six weeks) was compared with placebo (inactive ultrasound therapy) for calcific tendinitis. At six weeks, the mean reduction in overall pain with placebo was -6.3 points on a 52-point scale, and -14.9 points with ultrasound (MD -8.60 points, 95% CI -13.48 to -3.72 points; absolute risk difference 17%, 7% to 26% more). Mean improvement in function with placebo was 3.7 points on a 100-point scale, and 17.8 points with ultrasound (mean difference (MD) 14.10 points, 95% confidence interval (CI) 5.39 to 22.81 points; absolute risk difference 14%, 5% to 23% more). Ninety-one per cent (29/32) of participants reported treatment success with ultrasound compared with 52% (15/29) of participants receiving placebo (risk ratio (RR) 1.75, 95% CI 1.21 to 2.53; absolute risk difference 39%, 18% to 60% more). Mean improvement in quality of life with placebo was 0.40 points on a 10-point scale, and 2.60 points with ultrasound (MD 2.20 points, 95% CI 0.91 points to 3.49 points; absolute risk difference 22%, 9% to 35% more). Between-group differences were not important at nine months. No participant reported adverse events.Therapeutic ultrasound produced no clinically important additional benefits when combined with other physical therapy interventions (eight clinically heterogeneous trials, low quality evidence). We are uncertain whether there are differences in patient-important outcomes between ultrasound and other active interventions (manual therapy, acupuncture, glucocorticoid injection, glucocorticoid injection plus oral tolmetin sodium, or exercise) because the quality of evidence is very low. Two placebo-controlled trials reported results favouring LLLT up to three weeks (low quality evidence), however combining LLLT with other physical therapy interventions produced few additional benefits (10 clinically heterogeneous trials, low quality evidence). We are uncertain whether transcutaneous electrical nerve stimulation (TENS) is more or less effective than glucocorticoid injection with respect to pain, function, global treatment success and active range of motion because of the very low quality evidence from a single trial. In other single, small trials, no clinically important benefits of pulsed electromagnetic field therapy (PEMF), microcurrent electrical stimulation (MENS), acetic acid iontophoresis and microwave diathermy were observed (low or very low quality evidence).No adverse events of therapeutic ultrasound, LLLT, TENS or microwave diathermy were reported by any participants. Adverse events were not measured in any trials investigating the effects of PEMF, MENS or acetic acid iontophoresis. AUTHORS' CONCLUSIONS: Based on low quality evidence, therapeutic ultrasound may have short-term benefits over placebo in people with calcific tendinitis, and LLLT may have short-term benefits over placebo in people with rotator cuff disease. Further high quality placebo-controlled trials are needed to confirm these results. In contrast, based on low quality evidence, PEMF may not provide clinically relevant benefits over placebo, and therapeutic ultrasound, LLLT and PEMF may not provide additional benefits when combined with other physical therapy interventions. We are uncertain whether TENS is superior to placebo, and whether any electrotherapy modality provides benefits over other active interventions (e.g. glucocorticoid injection) because of the very low quality of the evidence. Practitioners should communicate the uncertainty of these effects and consider other approaches or combinations of treatment. Further trials of electrotherapy modalities for rotator cuff disease should be based upon a strong rationale and consideration of whether or not they would alter the conclusions of this review.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Enfermedades Musculares/terapia , Manguito de los Rotadores , Dolor de Hombro/terapia , Adulto , Diatermia/métodos , Humanos , Magnetoterapia/métodos , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Eléctrica Transcutánea del Nervio/métodos , Terapia por Ultrasonido/métodos
3.
Cochrane Database Syst Rev ; (6): CD012224, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27283590

RESUMEN

BACKGROUND: Management of rotator cuff disease often includes manual therapy and exercise, usually delivered together as components of a physical therapy intervention. This review is one of a series of reviews that form an update of the Cochrane review, 'Physiotherapy interventions for shoulder pain'. OBJECTIVES: To synthesise available evidence regarding the benefits and harms of manual therapy and exercise, alone or in combination, for the treatment of people with rotator cuff disease. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE (January 1966 to March 2015), Ovid EMBASE (January 1980 to March 2015), CINAHL Plus (EBSCO, January 1937 to March 2015), ClinicalTrials.gov and the WHO ICTRP clinical trials registries up to March 2015, unrestricted by language, and reviewed the reference lists of review articles and retrieved trials, to identify potentially relevant trials. SELECTION CRITERIA: We included randomised and quasi-randomised trials, including adults with rotator cuff disease, and comparing any manual therapy or exercise intervention with placebo, no intervention, a different type of manual therapy or exercise or any other intervention (e.g. glucocorticoid injection). Interventions included mobilisation, manipulation and supervised or home exercises. Trials investigating the primary or add-on effect of manual therapy and exercise were the main comparisons of interest. Main outcomes of interest were overall pain, function, pain on motion, patient-reported global assessment of treatment success, quality of life and the number of participants experiencing adverse events. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, extracted the data, performed a risk of bias assessment and assessed the quality of the body of evidence for the main outcomes using the GRADE approach. MAIN RESULTS: We included 60 trials (3620 participants), although only 10 addressed the main comparisons of interest. Overall risk of bias was low in three, unclear in 14 and high in 43 trials. We were unable to perform any meta-analyses because of clinical heterogeneity or incomplete outcome reporting. One trial compared manual therapy and exercise with placebo (inactive ultrasound therapy) in 120 participants with chronic rotator cuff disease (high quality evidence). At 22 weeks, the mean change in overall pain with placebo was 17.3 points on a 100-point scale, and 24.8 points with manual therapy and exercise (adjusted mean difference (MD) 6.8 points, 95% confidence interval (CI) -0.70 to 14.30 points; absolute risk difference 7%, 1% fewer to 14% more). Mean change in function with placebo was 15.6 points on a 100-point scale, and 22.4 points with manual therapy and exercise (adjusted MD 7.1 points, 95% CI 0.30 to 13.90 points; absolute risk difference 7%, 1% to 14% more). Fifty-seven per cent (31/54) of participants reported treatment success with manual therapy and exercise compared with 41% (24/58) of participants receiving placebo (risk ratio (RR) 1.39, 95% CI 0.94 to 2.03; absolute risk difference 16% (2% fewer to 34% more). Thirty-one per cent (17/55) of participants reported adverse events with manual therapy and exercise compared with 8% (5/61) of participants receiving placebo (RR 3.77, 95% CI 1.49 to 9.54; absolute risk difference 23% (9% to 37% more). However adverse events were mild (short-term pain following treatment).Five trials (low quality evidence) found no important differences between manual therapy and exercise compared with glucocorticoid injection with respect to overall pain, function, active shoulder abduction and quality of life from four weeks up to 12 months. However, global treatment success was more common up to 11 weeks in people receiving glucocorticoid injection (low quality evidence). One trial (low quality evidence) showed no important differences between manual therapy and exercise and arthroscopic subacromial decompression with respect to overall pain, function, active range of motion and strength at six and 12 months, or global treatment success at four to eight years. One trial (low quality evidence) found that manual therapy and exercise may not be as effective as acupuncture plus dietary counselling and Phlogenzym supplement with respect to overall pain, function, active shoulder abduction and quality life at 12 weeks. We are uncertain whether manual therapy and exercise improves function more than oral non-steroidal anti-inflammatory drugs (NSAID), or whether combining manual therapy and exercise with glucocorticoid injection provides additional benefit in function over glucocorticoid injection alone, because of the very low quality evidence in these two trials.Fifty-two trials investigated effects of manual therapy alone or exercise alone, and the evidence was mostly very low quality. There was little or no difference in patient-important outcomes between manual therapy alone and placebo, no treatment, therapeutic ultrasound and kinesiotaping, although manual therapy alone was less effective than glucocorticoid injection. Exercise alone led to less improvement in overall pain, but not function, when compared with surgical repair for rotator cuff tear. There was little or no difference in patient-important outcomes between exercise alone and placebo, radial extracorporeal shockwave treatment, glucocorticoid injection, arthroscopic subacromial decompression and functional brace. Further, manual therapy or exercise provided few or no additional benefits when combined with other physical therapy interventions, and one type of manual therapy or exercise was rarely more effective than another. AUTHORS' CONCLUSIONS: Despite identifying 60 eligible trials, only one trial compared a combination of manual therapy and exercise reflective of common current practice to placebo. We judged it to be of high quality and found no clinically important differences between groups in any outcome. Effects of manual therapy and exercise may be similar to those of glucocorticoid injection and arthroscopic subacromial decompression, but this is based on low quality evidence. Adverse events associated with manual therapy and exercise are relatively more frequent than placebo but mild in nature. Novel combinations of manual therapy and exercise should be compared with a realistic placebo in future trials. Further trials of manual therapy alone or exercise alone for rotator cuff disease should be based upon a strong rationale and consideration of whether or not they would alter the conclusions of this review.


Asunto(s)
Terapia por Ejercicio/métodos , Enfermedades Musculares/terapia , Manipulaciones Musculoesqueléticas , Manguito de los Rotadores , Dolor de Hombro/terapia , Adulto , Humanos , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Dolor de Hombro/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA