Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174587, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986710

RESUMEN

The concentration of atmospheric carbon dioxide (CO2) is a crucial climate parameter as it has far-reaching implications on global temperature. The oceans are a significant sink for CO2. Biologically mediated carbon sequestration, in the form of both inorganic (CaCO3) and organic carbon (Corg), and its subsequent burial in marine sediments play a vital role in regulating atmospheric CO2. Understanding the distribution of carbon in marine sediments under different environments can help predict the fate of excess CO2 in the future. We studied the factors affecting the basin scale variation in carbon burial in the climatically sensitive northeast Indian Ocean, by using the data [CaCO3, Corg, Corg/Nitrogen, and isotopic ratio (δ13C, δ15N) of organic carbon] from a total of 718 surface sediments. The entire continental shelf and slope contain <10 % CaCO3. The highest CaCO3 is in the deepest parts of the central northeast Indian Ocean, away from the mouth of major river systems. Despite of the high productivity, the low Corg on the continental shelf is attributed to the well-oxygenated coarse-grained sediments. The lowest Corg is found in the well-oxygenated deeper central northeast Indian Ocean. Interestingly, the highest total carbon is in the deeper central and equatorial regions, far away from the highly productive marginal marine regions. Our study reveals that the grain size, terrigenous dilution, dissolved oxygen, and water masses strongly influence carbon accumulation in the northeast Indian Ocean, with only secondary influence of the productivity.

2.
Mar Pollut Bull ; 153: 110992, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275541

RESUMEN

Despite being located at the same latitudes, the Bay of Bengal oxygen deficient zone (ODZ) is markedly different than the Arabian Sea ODZ. The uptake of oxygen in the Bay of Bengal does not lead to denitrification as in the Arabian Sea. This difference in ODZ of the Bay of Bengal and the Arabian Sea is expected to support different benthic fauna. We report that the living benthic foraminifera in the Bay of Bengal ODZ are markedly different than that in the Arabian Sea ODZ. Only four species (Brizalina spathulata, Eubuliminella exilis, Uvigerina peregrina and Rotaliatinopsis semiinvoluta) dominant in the Bay of Bengal ODZ have also been reported from the Arabian Sea oxygen deficient waters. The difference in living benthic foraminifera dominant in the ODZ of the Bay of Bengal and the Arabian Sea, is attributed to the lack of denitrification and associated processes in the Bay of Bengal.


Asunto(s)
Desnitrificación , Foraminíferos , Bahías , Oxígeno , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA