Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976480

RESUMEN

The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Herein, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetic complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program.

2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928166

RESUMEN

Activation of the transcription factor NF-κB in cardiomyocytes has been implicated in the development of cardiac function deficits caused by diabetes. NF-κB controls the expression of an array of pro-inflammatory cytokines and chemokines. We recently discovered that the stress response protein regulated in development and DNA damage response 1 (REDD1) was required for increased pro-inflammatory cytokine expression in the hearts of diabetic mice. The studies herein were designed to extend the prior report by investigating the role of REDD1 in NF-κB signaling in cardiomyocytes. REDD1 genetic deletion suppressed NF-κB signaling and nuclear localization of the transcription factor in human AC16 cardiomyocyte cultures exposed to TNFα or hyperglycemic conditions. A similar suppressive effect on NF-κB activation and pro-inflammatory cytokine expression was also seen in cardiomyocytes by knocking down the expression of GSK3ß. NF-κB activity was restored in REDD1-deficient cardiomyocytes exposed to hyperglycemic conditions by expression of a constitutively active GSK3ß variant. In the hearts of diabetic mice, REDD1 was required for reduced inhibitory phosphorylation of GSK3ß at S9 and upregulation of IL-1ß and CCL2. Diabetic REDD1+/+ mice developed systolic functional deficits evidenced by reduced ejection fraction. By contrast, REDD1-/- mice did not exhibit a diabetes-induced deficit in ejection fraction and left ventricular chamber dilatation was reduced in diabetic REDD1-/- mice, as compared to diabetic REDD1+/+ mice. Overall, the results support a role for REDD1 in promoting GSK3ß-dependent NF-κB signaling in cardiomyocytes and in the development of cardiac function deficits in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental , Glucógeno Sintasa Quinasa 3 beta , Miocitos Cardíacos , FN-kappa B , Transducción de Señal , Factores de Transcripción , Animales , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones Noqueados , Masculino , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Fosforilación , Eliminación de Gen
3.
Invest Ophthalmol Vis Sci ; 65(3): 34, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38546584

RESUMEN

Purpose: Inflammasome activation has been implicated in the development of retinal complications caused by diabetes. This study was designed to identify signaling events that promote retinal NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in response to diabetes. Methods: Diabetes was induced in mice by streptozotocin administration. Retinas were examined after 16 weeks of diabetes. Human MIO-M1 Müller cells were exposed to hyperglycemic culture conditions. Genetic and pharmacological interventions were used to interrogate signaling pathways. Visual function was assessed in mice using a virtual optomotor system. Results: In the retina of diabetic mice and in Müller cell cultures, NLRP3 and interleukin-1ß (IL-1ß) were increased in response to hyperglycemic conditions and the stress response protein Regulated in Development and DNA damage 1 (REDD1) was required for the effect. REDD1 deletion prevented caspase-1 activation in Müller cells exposed to hyperglycemic conditions and reduced IL-1ß release. REDD1 promoted nuclear factor κB signaling in cells exposed to hyperglycemic conditions, which was necessary for an increase in NLRP3. Expression of a constitutively active GSK3ß variant restored NLRP3 expression in REDD1-deficient cells exposed to hyperglycemic conditions. GSK3 activity was necessary for increased NLRP3 expression in the retina of diabetic mice and in cells exposed to hyperglycemic conditions. Müller glia-specific REDD1 deletion prevented increased retinal NLRP3 levels and deficits in contrast sensitivity in diabetic mice. Conclusions: The data support a role for REDD1-dependent activation of GSK3ß in NLRP3 inflammasome transcriptional priming and in the production of IL-1ß by Müller glia in response to diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Glucógeno Sintasa Quinasa 3 beta , Hiperglucemia , Factores de Transcripción , Animales , Humanos , Ratones , Daño del ADN , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de Choque Térmico , Inflamasomas , Interleucina-1beta , Ratones Endogámicos NOD , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Retina , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 299(8): 104991, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392853

RESUMEN

Increasing evidence supports a role for inflammation in the early development and progression of retinal complications caused by diabetes. We recently demonstrated that the stress response protein regulated in development and DNA damage response 1 (REDD1) promotes diabetes-induced retinal inflammation by sustaining canonical activation of nuclear transcription factor, NF-κB. The studies here were designed to identify signaling events whereby REDD1 promotes NF-κB activation in the retina of diabetic mice. We observed increased REDD1 expression in the retina of mice after 16 weeks of streptozotocin (STZ)-induced diabetes and found that REDD1 was essential for diabetes to suppress inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at S9. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented dephosphorylation of GSK3ß and increased NF-κB activation in response to hyperglycemic conditions. Expression of a constitutively active GSK3ß variant restored NF-κB activation in cells deficient for REDD1. In cells exposed to hyperglycemic conditions, GSK3ß knockdown inhibited NF-κB activation and proinflammatory cytokine expression by preventing inhibitor of κB kinase complex autophosphorylation and inhibitor of κB degradation. In both the retina of STZ-diabetic mice and in Müller cells exposed to hyperglycemic conditions, GSK3 inhibition reduced NF-κB activity and prevented an increase in proinflammatory cytokine expression. In contrast with STZ-diabetic mice receiving a vehicle control, macrophage infiltration was not observed in the retina of STZ-diabetic mice treated with GSK3 inhibitor. Collectively, the findings support a model wherein diabetes enhances REDD1-dependent activation of GSK3ß to promote canonical NF-κB signaling and the development of retinal inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Humanos , Masculino , Ratones , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperglucemia/metabolismo , Inflamación/genética , Inflamación/metabolismo , FN-kappa B/metabolismo , Retina/metabolismo
5.
Am J Physiol Endocrinol Metab ; 324(1): E62-E72, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36383638

RESUMEN

Endoplasmic reticulum (ER) stress and inflammation are hallmarks of myocardial impairment. Here, we investigated the role of the stress response protein regulated in development and DNA damage 1 (REDD1) as a molecular link between ER stress and inflammation in cardiomyocytes. In mice fed a high-fat high-sucrose (HFHS, 42% kcal fat, 34% sucrose by weight) diet for 12 wk, REDD1 expression in the heart was increased in coordination with markers of ER stress and inflammation. In human AC16 cardiomyocytes exposed to either hyperglycemic conditions or the saturated fatty acid palmitate, REDD1 expression was increased coincident with ER stress and upregulated expression of the proinflammatory cytokines IL-1ß, IL-6, and TNFα. In cardiomyocytes exposed to hyperglycemic/hyperlipidemic conditions, pharmacological inhibition of the ER kinase protein kinase RNA-like endoplasmic reticulum kinase (PERK) or knockdown of the transcription factor ATF4 prevented the increase in REDD1 expression. REDD1 deletion reduced proinflammatory cytokine expression in both cardiomyocytes exposed to hyperglycemic/hyperlipidemic conditions and in the hearts of obese mice. Overall, the findings support a model wherein HFHS diet contributes to the development of inflammation in cardiomyocytes by promoting REDD1 expression via activation of a PERK/ATF4 signaling axis.NEW & NOTEWORTHY Interplay between endoplasmic reticulum stress and inflammation contributes to cardiovascular disease progression. The studies here identify the stress response protein known as REDD1 as a missing molecular link that connects the development of endoplasmic reticulum stress with increased production of proinflammatory cytokines in the hearts of obese mice.


Asunto(s)
Citocinas , Proteínas Quinasas , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Citocinas/metabolismo , Daño del ADN , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Inflamación/metabolismo , Ratones Obesos , Proteínas Quinasas/metabolismo
6.
J Biol Chem ; 298(12): 102638, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309088

RESUMEN

Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented increased pro-inflammatory cytokine expression in response to hyperglycemic conditions. REDD1 deletion promoted nuclear factor erythroid-2-related factor 2 (Nrf2) hyperactivation; however, Nrf2 was not required for reduced inflammatory cytokine expression in REDD1-deficient cells. Rather, REDD1 enhanced inflammatory cytokine expression by promoting activation of nuclear transcription factor κB (NF-κB). In WT cells exposed to tumor necrosis factor α (TNFα), inflammatory cytokine expression was increased in coordination with activating transcription factor 4 (ATF4)-dependent REDD1 expression and sustained activation of NF-κB. In both Müller cell cultures exposed to TNFα and in the retina of STZ-diabetic mice, REDD1 deletion promoted inhibitor of κB (IκB) expression and reduced NF-κB DNA-binding activity. We found that REDD1 acted upstream of IκB by enhancing both K63-ubiquitination and auto-phosphorylation of IκB kinase complex. In contrast with STZ-diabetic REDD1+/+ mice, IκB kinase complex autophosphorylation and macrophage infiltration were not observed in the retina of STZ-diabetic REDD1-/- mice. The findings provide new insight into how diabetes promotes retinal inflammation and support a model wherein REDD1 sustains activation of canonical NF-κB signaling.


Asunto(s)
Diabetes Mellitus Experimental , Retinitis , Factores de Transcripción , Animales , Humanos , Ratones , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Proteínas de Choque Térmico/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Retinitis/patología
7.
Invest Ophthalmol Vis Sci ; 63(11): 25, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36306144

RESUMEN

Purpose: Neuroglial dysfunction occurs early in the progression of diabetic retinopathy. In response to diabetes or hypoxia, Müller glia secrete cytokines and growth factors that contribute to disease progression. This study was designed to examine common signaling pathways activated in Müller glia by both type 1 and pre-/type 2 diabetes. Methods: RiboTag (Pdgfra-cre;HA-Rpl22) mice were used to compare the impact of streptozotocin (STZ) and a high-fat, high-sucrose (HFHS) diet on ribosome association of mRNAs in Müller glia by RNA sequencing analysis. Human MIO-M1 Müller cells were exposed to either hyperglycemic or hypoxic culture conditions. Genetic manipulation and pharmacologic inhibition were used to interrogate signaling pathways. Results: Association of mRNAs encoding triggering receptor expressed on myeloid cells 2 (TREM2), DNAX-activating protein 12 kDa (DAP12), and colony stimulating factor 1 receptor (CSF1R) with ribosomes isolated from Müller glia was upregulated in both STZ diabetic mice and mice fed an HFHS diet. The TREM2/DAP12 receptor-adaptor complex signals in coordination with CSF1R to activate spleen tyrosine kinase (SYK). SYK activation was enhanced in the retina of diabetic mice and in human MIO-M1 Müller cell cultures exposed to hyperglycemic or hypoxic culture conditions. DAP12 knockdown reduced SYK autophosphorylation in Müller cells exposed to hyperglycemic or hypoxic conditions. SYK inhibition or DAP12 knockdown suppressed hypoxia-induced expression of the transcription factor hypoxia-inducible factor 1⍺ (HIF1⍺), as well as expression of vascular endothelial growth factor and angiopoietin-like 4. Conclusions: The findings support TREM2/DAP12 receptor-adaptor complex signaling via SYK to promote HIF1α stabilization and increased angiogenic cytokine production by Müller glia.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Ratones , Humanos , Quinasa Syk/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuroglía/metabolismo , Estreptozocina/metabolismo , Hipoxia/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
8.
Diabetes ; 71(12): 2764-2776, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170669

RESUMEN

The stress response protein regulated in development and DNA damage response 1 (REDD1) has been implicated in visual deficits in patients with diabetes. The aim here was to investigate the mechanism responsible for the increase in retinal REDD1 protein content that is observed with diabetes. We found that REDD1 protein expression was increased in the retina of streptozotocin-induced diabetic mice in the absence of a change in REDD1 mRNA abundance or ribosome association. Oral antioxidant supplementation reduced retinal oxidative stress and suppressed REDD1 protein expression in the retina of diabetic mice. In human retinal Müller cell cultures, hyperglycemic conditions increased oxidative stress, enhanced REDD1 expression, and inhibited REDD1 degradation independently of the proteasome. Hyperglycemic conditions promoted a redox-sensitive cross-strand disulfide bond in REDD1 at C150/C157 that was required for reduced REDD1 degradation. Discrete molecular dynamics simulations of REDD1 structure revealed allosteric regulation of a degron upon formation of the disulfide bond that disrupted lysosomal proteolysis of REDD1. REDD1 acetylation at K129 was required for REDD1 recognition by the cytosolic chaperone HSC70 and degradation by chaperone-mediated autophagy. Disruption of REDD1 allostery upon C150/C157 disulfide bond formation prevented the suppressive effect of hyperglycemic conditions on REDD1 degradation and reduced oxidative stress in cells exposed to hyperglycemic conditions. The results reveal redox regulation of REDD1 and demonstrate the role of a REDD1 disulfide switch in development of oxidative stress.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Humanos , Ratones , Animales , Diabetes Mellitus Experimental/metabolismo , Disulfuros/farmacología , Factores de Transcripción/metabolismo , Estrés Oxidativo , Oxidación-Reducción
9.
Diabetes ; 71(11): 2412-2425, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35984399

RESUMEN

Chronic hyperglycemia contributes to development of diabetic kidney disease by promoting glomerular injury. In this study, we evaluated the hypothesis that hyperglycemic conditions promote expression of the stress response protein regulated in development and DNA damage response 1 (REDD1) in the kidney in a manner that contributes to the development of oxidative stress and renal injury. After 16 weeks of streptozotocin-induced diabetes, albuminuria and renal hypertrophy were observed in wild-type (WT) mice coincident with increased renal REDD1 expression. In contrast, diabetic REDD1 knockout (KO) mice did not exhibit impaired renal physiology. Histopathologic examination revealed that glomerular damage including mesangial expansion, matrix deposition, and podocytopenia in the kidneys of diabetic WT mice was reduced or absent in diabetic REDD1 KO mice. In cultured human podocytes, exposure to hyperglycemic conditions enhanced REDD1 expression, increased reactive oxygen species (ROS) levels, and promoted cell death. In both the kidney of diabetic mice and in podocyte cultures exposed to hyperglycemic conditions, REDD1 deletion reduced ROS and prevented podocyte loss. Benefits of REDD1 deletion were recapitulated by pharmacological GSK3ß suppression, supporting a role for REDD1-dependent GSK3ß activation in diabetes-induced oxidative stress and renal defects. The results support a role for REDD1 in diabetes-induced renal complications.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Hiperglucemia , Podocitos , Humanos , Ratones , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estreptozocina , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Nefropatías Diabéticas/metabolismo , Albuminuria/genética , Podocitos/metabolismo , Riñón/metabolismo , Ratones Noqueados , Hiperglucemia/metabolismo
10.
Diabetes ; 71(5): 1051-1062, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167652

RESUMEN

Clinical studies support a role for the protein regulated in development and DNA damage response 1 (REDD1) in ischemic retinal complications. To better understand how REDD1 contributes to retinal pathology, we examined human single-cell sequencing data sets and found specificity of REDD1 expression that was consistent with markers of retinal Müller glia. Thus, we investigated the hypothesis that REDD1 expression specifically in Müller glia contributes to diabetes-induced retinal pathology. The retina of Müller glia-specific REDD1 knockout (REDD1-mgKO) mice exhibited dramatic attenuation of REDD1 transcript and protein expression. In the retina of streptozotocin-induced diabetic control mice, REDD1 protein expression was enhanced coincident with an increase in oxidative stress. In the retina of diabetic REDD1-mgKO mice, there was no increase in REDD1 protein expression, and oxidative stress was reduced compared with diabetic control mice. In both Müller glia within the retina of diabetic mice and human Müller cell cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the gliosis marker glial fibrillary acidic protein. The effect of REDD1 deletion in preventing gliosis was associated with suppression of oxidative stress and required the antioxidant transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2). In contrast to diabetic control mice, diabetic REDD1-mgKO mice did not exhibit retinal thinning, increased markers of neurodegeneration within the retinal ganglion cell layer, or deficits in visual function. Overall, the findings support a key role for Müller glial REDD1 in the failed adaptive response of the retina to diabetes that includes gliosis, neurodegeneration, and impaired vision.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Células Ependimogliales , Gliosis/metabolismo , Gliosis/patología , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Retina/metabolismo
11.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638597

RESUMEN

Cyclosporine A (CsA) is a nephrotoxicant that causes fibrosis via induction of epithelial-mesenchymal transition (EMT). The flavonoid chrysin has been reported to have anti-fibrotic activity and inhibit signaling pathways that are activated during EMT. This study investigated the nephroprotective role of chrysin in the prevention of CsA-induced renal fibrosis and elucidated a mechanism of inhibition against CsA-induced EMT in proximal tubule cells. Treatment with chrysin prevented CsA-induced renal dysfunction in Sprague Dawley rats measured by blood urea nitrogen (BUN), serum creatinine and creatinine clearance. Chrysin inhibited CsA-induced tubulointerstitial fibrosis, characterized by reduced tubular damage and collagen deposition. In vitro, chrysin significantly inhibited EMT in LLC-PK1 cells, evidenced by inhibition of cell migration, decreased collagen expression, reduced presence of mesenchymal markers and elevated epithelial junction proteins. Furthermore, chrysin co-treatment diminished CsA-induced TGF-ß1 signaling pathways, decreasing Smad 3 phosphorylation which lead to a subsequent reduction in Snail expression. Chrysin also inhibited activation of the Akt/ GSK-3ß pathway. Inhibition of both pathways diminished the cytosolic accumulation of ß-catenin, a known trigger for EMT. In conclusion, flavonoids such as chrysin offer protection against CsA-induced renal dysfunction and interstitial fibrosis. Chrysin was shown to inhibit CsA-induced TGF-ß1-dependent EMT in proximal tubule cells by modulation of Smad-dependent and independent signaling pathways.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Flavonoides/farmacología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Animales , Movimiento Celular/efectos de los fármacos , Colágeno/metabolismo , Ciclosporina/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Enfermedades Renales/inducido químicamente , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo
12.
Cell Signal ; 84: 110010, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872697

RESUMEN

Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.


Asunto(s)
Glucagón , Fosfatidilinositol 3-Quinasas , Glucagón/metabolismo , Glucagón/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal
13.
Free Radic Biol Med ; 165: 127-136, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33524531

RESUMEN

Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Factores de Transcripción , Retinopatía Diabética/genética , Proteínas de Choque Térmico , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Am J Physiol Endocrinol Metab ; 320(2): E306-E315, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284085

RESUMEN

Increased expression of the peptide hormone retinol-binding protein 4 (RBP4) has been implicated in the development of insulin resistance, type 2 diabetes, and visual dysfunction. Prior investigations of the mechanisms that influence RBP4 synthesis have focused solely on changes in mRNA abundance. Yet, the production of many secreted proteins is controlled at the level of mRNA translation, as it allows for a rapid and reversible change in expression. Herein, we evaluated Rbp4 mRNA translation using sucrose density gradient centrifugation. In the liver of fasted rodents, Rbp4 mRNA translation was low. In response to refeeding, Rbp4 mRNA translation was enhanced and RBP4 levels in serum were increased. In H4IIE cells, refreshing culture medium promoted Rbp4 mRNA translation and expression of the protein. Rbp4 mRNA abundance was not increased by either experimental manipulation. Enhanced Rbp4 mRNA translation was associated with activation of the kinase mechanistic target of rapamycin in complex 1 (mTORC1) and enhanced phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In H4IIE cells, expression of a 4E-BP1 variant that is unable to be phosphorylated by mTORC1 or suppression of mTORC1 with rapamycin attenuated activity of a luciferase reporter encoding the Rbp4 mRNA 5'-untranslated region (UTR). Purine substitutions to disrupt a terminal oligopyrimidine (TOP)-like sequence in the Rbp4 5'-UTR prevented the suppressive effect of rapamycin on reporter activity. Rapamycin also prevented upregulation of Rbp4 mRNA translation in the liver and reduced serum levels of RBP4 in response to feeding. Overall, the findings support a model in which nutrient-induced activation of mTORC1 upregulates Rbp4 mRNA translation to promote RBP4 synthesis.NEW & NOTEWORTHY RBP4 plays a critical role in metabolic disease, yet relatively little is known about the mechanisms that regulate its production. Herein, we provide evidence for translational control of RBP4 synthesis. We demonstrate that activation of the nutrient-sensitive kinase mTORC1 promotes hepatic Rbp4 mRNA translation. The findings support the possibility that targeting Rbp4 mRNA translation represents an alternative to current therapeutic interventions that lower serum RBP4 concentration by promoting urinary excretion of the protein.


Asunto(s)
Hepatocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Animales , Células Cultivadas , Ingestión de Alimentos/fisiología , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
15.
J Biol Chem ; 295(31): 10831-10841, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32475820

RESUMEN

Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; however, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller cell-specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eIF4E (eukaryotic translation in initiation factor 4E) by 4E-BP1 (eIF4E-binding protein 1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to WT mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to up-regulate expression of the inflammatory marker nitric-oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos CD40/biosíntesis , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Ependimogliales/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos CD40/genética , Proteínas de Ciclo Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Células Ependimogliales/patología , Factores Eucarióticos de Iniciación/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero/genética , Regulación hacia Arriba
16.
J Biol Chem ; 295(21): 7350-7361, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32295843

RESUMEN

The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteolisis , Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Retina/patología , Factores de Transcripción/genética
17.
Toxicol Lett ; 323: 19-24, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31962156

RESUMEN

Cultured kidney cells maintained in conventional growth media with high glucose levels exhibit increased glycolytic activity compared to the cells in vivo. In contrast, renal proximal tubules utilize substrates such as ketone bodies and rely on mitochondrial oxidative phosphorylation. LLC-PK1 cells maintain many features of the proximal tubule but are exposed to glucose concentrations ranging from 17 to 25 mM. This may impact their reliability in predicting mitochondrial toxicity. This study is designed to test the impact of the ketone body acetoacetate on metabolic characteristics of LLC-PK1 cells. Basal respiration, maximal respiration, spare respiratory capacity and ATP-linked respiration were significantly increased in cells grown in growth medium supplemented with 5 mM acetoacetate. In contrast, glycolytic capacity, as well as glycolytic reserve were significantly reduced in the acetoacetate group. There was an increased expression in biomarkers of mitochondrial biogenesis, and an increase in mitochondrial protein expression. Cells grown in medium complemented with acetoacetate displayed a significantly lower LC50 when treated with clotrimazole and diclofenac. There was a marked increase in uncoupled respiration in the presence of diclofenac, while clotrimazole and ciprofibrate significantly decreased respiration in the acetoacetate. The results indicate that acetoacetate complemented media can alter cellular metabolism and increase sensitization to toxicants.


Asunto(s)
Acetoacetatos/farmacología , Riñón/efectos de los fármacos , Animales , Células Cultivadas , Clotrimazol/toxicidad , Diclofenaco/toxicidad , Ácidos Fíbricos/toxicidad , Glucólisis/efectos de los fármacos , Riñón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Porcinos
18.
Am J Physiol Cell Physiol ; 316(6): C913-C924, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30943059

RESUMEN

Na+-dependent glucose reabsorption in the renal proximal tubule is dynamically regulated by changes in blood glucose levels. There is, however, a disparity in reports studying the relationship between hyperglycemia and Na+-glucose-linked transporter (SGLT) function and expression. Similarly, manipulation of the glucose content in growth media of cultured renal cells has been shown to influence SGLT activity. In this investigation, SGLT activity was significantly lower in proximal tubule LLC-PK1 cells cultured in medium containing 17.5 than 5 mM glucose. α-Methyl d-glucopyranoside (AMG) transport kinetics showed reduced apparent Vmax and Km in cells grown in 17.5 mM glucose. SGLT2 was identified as the isoform responsible for glucose transport, and protein expression analyses showed decreased apical membrane localization of SGLT2 in cells grown in 17.5 mM glucose, explaining the reduced activity. Multiple signaling pathways have been implicated in regulation of SGLT activity and trafficking. Elevated media glucose decreased intracellular cAMP and PKA activation, leading to decreased SGLT2 trafficking into the plasma membrane, which was reversed after treatment with 1 µM forskolin. The effects of media glucose on SGLT activity were found to be dependent on p38 MAPK activation due to PKA-mediated signaling. Glucose-modulated AMG uptake is reversible and was associated with altered SGLT2 membrane trafficking and cAMP alterations. In summary, elevated glucose concentrations in culture medium decrease SGLT activity in LLC-PK1 cells by reducing membrane trafficking of SGLT2 via decreasing intracellular cAMP, resulting in a lowered PKA-dependent phosphorylation of p38 MAPK.


Asunto(s)
Medios de Cultivo/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Glucosa/metabolismo , Células LLC-PK1/metabolismo , Transducción de Señal/fisiología , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Riñón/metabolismo , Riñón/fisiología , Transporte de Proteínas/fisiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA