Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Adv ; 10(36): eadq2950, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39231220

RESUMEN

Eukaryotic cilia and flagella are essential for cell motility and sensory functions. Their biogenesis and maintenance rely on the intraflagellar transport (IFT). Several cargo adapters have been identified to aid IFT cargo transport, but how ciliary cargos are discharged from the IFT remains largely unknown. During our explorations of small GTPases ARL13 and ARL3 in Trypanosoma brucei, we found that ODA16, a known IFT cargo adapter present exclusively in motile cilia, is a specific effector of ARL3. In the cilia, active ARL3 GTPases bind to ODA16 and dissociate ODA16 from the IFT complex. Depletion of ARL3 GTPases stabilizes ODA16 interaction with the IFT, leading to ODA16 accumulation in cilia and defects in axonemal assembly. The interactions between human ODA16 homolog HsDAW1 and ARL GTPases are conserved, and these interactions are altered in HsDAW1 disease variants. These findings revealed a conserved function of ARL GTPases in IFT transport of motile ciliary components, and a mechanism of cargo unloading from the IFT.


Asunto(s)
Factores de Ribosilacion-ADP , Cilios , Proteínas Protozoarias , Trypanosoma brucei brucei , Humanos , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Axonema/metabolismo , Transporte Biológico , Cilios/metabolismo , Flagelos/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/metabolismo
2.
mBio ; 15(4): e0286423, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38456679

RESUMEN

Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE: Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.


Asunto(s)
Malaria , Parásitos , Plasmodium , Toxoplasma , Animales , Plasmodium falciparum/metabolismo , Tomografía con Microscopio Electrónico , Proteínas Protozoarias/metabolismo , Parásitos/metabolismo , Interacciones Huésped-Parásitos , Toxoplasma/metabolismo
3.
PNAS Nexus ; 1(4): pgac183, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36329726

RESUMEN

Host cell invasion by intracellular, eukaryotic parasites within the phylum Apicomplexa is a remarkable and active process involving the coordinated action of apical organelles and other structures. To date, capturing how these structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to image the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through stimulation with calcium ionophore. Through the application of mixed-scale dense networks for image processing, we developed a highly efficient pipeline for annotation of tomograms, enabling us to identify and extract densities of relevant subcellular organelles and accurately analyze features in 3-D. The results reveal a dramatic change in the shape of the anteriorly located apical vesicle upon its apparent fusion with a rhoptry that occurs only in the stimulated parasites. We also present information indicating that this vesicle originates from the vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. We show that a rosette structure previously proposed to be involved in rhoptry secretion is associated with apical vesicles beyond just the most anterior one. This result, suggesting multiple vesicles are primed to enable rhoptry secretion, may shed light on the mechanisms Toxoplasma employs to enable repeated invasion attempts. Using the same approach, we examine Plasmodium falciparum merozoites and show that they too possess an apical vesicle just beneath a rosette, demonstrating evolutionary conservation of this overall subcellular organization.

4.
Oncol Lett ; 24(2): 264, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35765277

RESUMEN

Prolyl 4-hydroxylase beta polypeptide (P4HB) is a chaperone protein associated with temozolomide (TMZ) resistance through the unfolded protein response. Cancer cells with constitutive activation of endoplasmic reticulum stress and upregulation of P4HB have been observed to show resistance against chemotherapies. The present study focused on the evaluation of the prognostic value of P4HB in subtypes of glioma with or without O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. P4HB expression was assessed by immunohistochemical staining in 73 grade I-IV gliomas and its association with the clinicopathological data was determined. It was indicated that P4HB expression was significantly associated with several parameters, including age, tumour grade and the number of TMZ treatment cycles received. In the Kaplan-Meier analysis, P4HB expression was positively associated with risk of mortality and disease progression. In patients treated with TMZ, high P4HB expression was significantly associated with poor overall survival (OS) and progression-free survival (PFS). The association between MGMT promoter methylation and P4HB expression was also assessed. Patients with MGMTMethP4HBLow tumours had the most favourable PFS (48 months) among cases with various combinations of MGMT methylation status and P4HB expression. Multivariate analysis revealed that P4HB may be used as an independent prognostic indicator of OS, particularly in high-grade gliomas. The present study uncovered the potential role of P4HB in a nuanced pathological stratification during clinical decision-making with respect to MGMT promoter methylation status and TMZ treatment.

5.
Methods Mol Biol ; 2431: 181-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412277

RESUMEN

The development of compartmentalized neuron culture systems has been invaluable in the study of neuroinvasive viruses, including the alpha herpesviruses Herpes Simplex Virus 1 (HSV-1) and Pseudorabies Virus (PRV). This chapter provides updated protocols for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichamber cultures. In addition, we provide several illustrative examples of the types of experiments that are enabled by Campenot cultures: (1) Using fluorescence microscopy to investigate axonal outgrowth/extension through the chambers, and alpha herpesvirus infection, intracellular trafficking, and cell-cell spread via axons. (2) Using correlative fluorescence microscopy and cryo electron tomography to investigate the ultrastructure of virus particles trafficking in axons.


Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Suido 1 , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Herpesvirus Humano 1/fisiología , Neuronas
6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121661

RESUMEN

Tubulin is a conserved protein that polymerizes into different forms of filamentous structures in Toxoplasma gondii, an obligate intracellular parasite in the phylum Apicomplexa. Two key tubulin-containing cytoskeletal components are subpellicular microtubules (SPMTs) and conoid fibrils (CFs). The SPMTs help maintain shape and gliding motility, while the CFs are implicated in invasion. Here, we use cryogenic electron tomography to determine the molecular structures of the SPMTs and CFs in vitrified intact and detergent-extracted parasites. Subvolume densities from detergent-extracted parasites yielded averaged density maps at subnanometer resolutions, and these were related back to their architecture in situ. An intralumenal spiral lines the interior of the 13-protofilament SPMTs, revealing a preferred orientation of these microtubules relative to the parasite's long axis. Each CF is composed of nine tubulin protofilaments that display a comma-shaped cross-section, plus additional associated components. Conoid protrusion, a crucial step in invasion, is associated with an altered pitch of each CF. The use of basic building blocks of protofilaments and different accessory proteins in one organism illustrates the versatility of tubulin to form two distinct types of assemblies, SPMTs and CFs.


Asunto(s)
Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Citoesqueleto/metabolismo , Tomografía con Microscopio Electrónico/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Orgánulos/metabolismo
7.
Front Oncol ; 11: 717793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970477

RESUMEN

Loss of heterozygosity (LOH) on chromosome 10 frequently occurs in gliomas. Whereas genetic loci with allelic deletion often implicate tumor suppressor genes, a putative tumor suppressor Adducin3 (ADD3) mapped to chromosome 10q25.2 was found to be preferentially downregulated in high-grade gliomas compared with low-grade lesions. In this study, we unveil how the assessment of ADD3 deletion provides clinical significance in glioblastoma (GBM). By deletion mapping, we assessed the frequency of LOH in forty-three glioma specimens using five microsatellite markers spanning chromosome 10q23-10qter. Data were validated in The Cancer Genome Atlas (TCGA) cohort with 203 GBM patients. We found that allelic loss in both D10S173 (ADD3/MXI1 locus) and D10S1137 (MGMT locus) were positively associated with tumor grading and proliferative index (MIB-1). However, LOH events at only the ADD3/MXI1 locus provided prognostic significance with a marked reduction in patient survival and appeared to have diagnostic potential in differentiating high-grade gliomas from low-grade ones. Furthermore, we showed progressive loss of ADD3 in six out of seven patient-paired gliomas with malignant progression, as well as in recurrent GBMs. These findings suggest the significance of ADD3/MXI1 locus as a promising marker that can be used to refine the LOH10q assessment. Data further suggest the role of ADD3 as a novel tumor suppressor, whereby the loss of ADD3 is indicative of a progressive disease that may at least partially account for rapid disease progression in GBM. This study revealed for the first time the downregulation of ADD3 on the genetic level resulting from copy number deletion.

8.
Exp Brain Res ; 239(12): 3565-3572, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34581840

RESUMEN

State-dependent network models of sub-second interval timing propose that duration is encoded in states of neuronal populations that need to reset prior to a novel timing operation to maintain optimal timing performance. Previous research has shown that the approximate boundary of this reset interval can be inferred by varying the inter-stimulus interval between two to-be-timed intervals. However, the estimated boundary of this reset interval is broad (250-500 ms) and remains under-specified with implications for the characteristics of state-dependent network dynamics sub-serving interval timing. Here, we probed the interval specificity of this reset boundary by manipulating the inter-stimulus interval between standard and comparison intervals in two sub-second auditory duration discrimination tasks (100 and 200 ms) and a control (pitch) discrimination task using adaptive psychophysics. We found that discrimination thresholds improved with the introduction of a 333 ms inter-stimulus interval relative to a 250 ms inter-stimulus interval in both duration discrimination tasks, but not in the control task. This effect corroborates previous findings of a breakpoint in the discrimination performance for sub-second stimulus interval pairs as a function of an incremental inter-stimulus delay but more precisely localizes the minimal inter-stimulus delay range. These results suggest that state-dependent networks sub-serving sub-second timing require approximately 250-333 ms for the network to reset to maintain optimal interval timing.


Asunto(s)
Percepción del Tiempo , Percepción Auditiva , Discriminación en Psicología , Humanos , Redes Neurales de la Computación , Psicofísica
9.
Phys Rev Lett ; 127(2): 027602, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296905

RESUMEN

How superconductivity interacts with charge or nematic order is one of the great unresolved issues at the center of research in quantum materials. Ba_{1-x}Sr_{x}Ni_{2}As_{2} (BSNA) is a charge ordered pnictide superconductor recently shown to exhibit a sixfold enhancement of superconductivity due to nematic fluctuations near a quantum phase transition (at x_{c}=0.7) [1]. The superconductivity is, however, anomalous, with the resistive transition for 0.4

10.
Nat Methods ; 16(11): 1161-1168, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611690

RESUMEN

Electron cryotomography is currently the only method capable of visualizing cells in three dimensions at nanometer resolutions. While modern instruments produce massive amounts of tomography data containing extremely rich structural information, data processing is very labor intensive and the results are often limited by the skills of the personnel rather than the data. We present an integrated workflow that covers the entire tomography data processing pipeline, from automated tilt series alignment to subnanometer resolution subtomogram averaging. Resolution enhancement is made possible through the use of per-particle per-tilt contrast transfer function correction and alignment. The workflow greatly reduces human bias, increases throughput and more closely approaches data-limited resolution for subtomogram averaging in both purified macromolecules and cells.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento Automatizado de Datos/métodos , Flujo de Trabajo , Procesamiento de Imagen Asistido por Computador/métodos
11.
Sci Adv ; 5(8): eaax3346, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31453340

RESUMEN

Charge order is universal among high-T c cuprates, but its relation to superconductivity is unclear. While static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. Using time-resolved resonant soft x-ray scattering at a free-electron laser, we show that the charge order in prototypical La2-x Ba x CuO4 exhibits transverse fluctuations at picosecond time scales. These sub-millielectron volt excitations propagate by Brownian-like diffusion and have an energy scale remarkably close to the superconducting T c. At sub-millielectron volt energy scales, the dynamics are governed by universal scaling laws defined by the propagation of topological defects. Our results show that charge order in La2-x Ba x CuO4 exhibits dynamics favorable to the in-plane superconducting tunneling and establish time-resolved x-rays as a means to study excitations at energy scales inaccessible to conventional scattering techniques.

12.
Phys Rev Lett ; 122(14): 147601, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050473

RESUMEN

Ba(Ni_{1-x}Co_{x})_{2}As_{2} is a structural homologue of the pnictide high temperature superconductor, Ba(Fe_{1-x}Co_{x})_{2}As_{2}, in which the Fe atoms are replaced by Ni. Superconductivity is highly suppressed in this system, reaching a maximum T_{c}=2.3 K, compared to 24 K in its iron-based cousin, and the origin of this T_{c} suppression is not known. Using x-ray scattering, we show that Ba(Ni_{1-x}Co_{x})_{2}As_{2} exhibits a unidirectional charge density wave (CDW) at its triclinic phase transition. The CDW is incommensurate, exhibits a sizable lattice distortion, and is accompanied by the appearance of α Fermi surface pockets in photoemission [B. Zhou et al., Phys. Rev. B 83, 035110 (2011)PRBMDO1098-012110.1103/PhysRevB.83.035110], suggesting it forms by an unconventional mechanism. Co doping suppresses the CDW, paralleling the behavior of antiferromagnetism in iron-based superconductors. Our study demonstrates that pnictide superconductors can exhibit competing CDW order, which may be the origin of T_{c} suppression in this system.

13.
Cell Host Microbe ; 24(3): 417-428.e5, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30146390

RESUMEN

Neutralizing antibodies (NAbs) are traditionally thought to inhibit virus infection by preventing virion entry into target cells. In addition, antibodies can engage Fc receptors (FcRs) on immune cells to activate antiviral responses. We describe a mechanism by which NAbs inhibit chikungunya virus (CHIKV), the most common alphavirus infecting humans, by preventing virus budding from infected human cells and activating IgG-specific Fcγ receptors. NAbs bind to CHIKV glycoproteins on the infected cell surface and induce glycoprotein coalescence, preventing budding of nascent virions and leaving structurally heterogeneous nucleocapsids arrested in the cytosol. Furthermore, NAbs induce clustering of CHIKV replication spherules at sites of budding blockage. Functionally, these densely packed glycoprotein-NAb complexes on infected cells activate Fcγ receptors, inducing a strong, antibody-dependent, cell-mediated cytotoxicity response from immune effector cells. Our findings describe a triply functional antiviral pathway for NAbs that might be broadly applicable across virus-host systems, suggesting avenues for therapeutic innovation through antibody design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Membrana Celular/virología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Liberación del Virus , Línea Celular , Membrana Celular/inmunología , Virus Chikungunya/genética , Humanos , Replicación Viral
14.
Proc Natl Acad Sci U S A ; 115(26): E5916-E5925, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891682

RESUMEN

In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.


Asunto(s)
Citoesqueleto , Flagelos , Trypanosoma brucei brucei , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Flagelos/metabolismo , Flagelos/ultraestructura , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestructura
15.
Asia Pac J Ophthalmol (Phila) ; 7(2): 76-83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29508951

RESUMEN

PURPOSE: Osteoodontokeratoprosthesis (OOKP) surgery is used to restore vision in end-stage corneal disorders, where an autogenous tooth supporting an optical cylinder is implanted through the cornea under a buccal mucosal graft. The ideal tooth for OOKP is a healthy single-rooted permanent tooth with sufficient buccolingual/palatal root diameter to accommodate an optical cylinder. The aim of this study was to determine the buccolingual/palatal diameters of canine and premolar roots in Chinese, for selection of teeth for OOKP surgery. DESIGN: This was an anatomical study on root dimensions of extracted intact teeth. METHODS: Extracted canine and premolar teeth (excluding maxillary first premolars) were collected and the buccolingual/palatal and mesiodistal diameters of the root at the cervical line and at 2-mm intervals below the cervical line were measured with Vernier calipers. Other measurements included total tooth length, crown buccolingual/palatal diameter, and root length. Mean and minimum buccolingual/palatal root diameters were compiled for each 2-mm interval. RESULTS: A total of 415 extracted teeth (198 male, 217 female) were collected and measured. Recorded dimensions of keratoprostheses in 55 previous OOKP surgeries were used to establish acceptable lamina dimensions to ascertain root size adequacy. Premolars in Chinese female patients were undersized in a small minority. Minimal dimensions of teeth were insufficient if at 6 mm root level, the buccolingual/palatal width was less than 5 mm, or the mesiodistal width was less than 3 mm. This was noted in female mandibular first premolars (5.6%), maxillary second premolars (4.5%), and mandibular second premolars (1.5%). CONCLUSIONS: Canines have adequate dimensions for OOKP surgery. However, premolars in Chinese females may be undersized in a small minority.


Asunto(s)
Diente Premolar/anatomía & histología , Enfermedades de la Córnea/cirugía , Diente Canino/anatomía & histología , Prótesis e Implantes , Raíz del Diente/anatomía & histología , Adulto , Pueblo Asiatico , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Odontometría , Valores de Referencia , Raíz del Diente/trasplante , Adulto Joven
16.
Oncotarget ; 8(42): 71911-71923, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069756

RESUMEN

Endoplasmic reticulum (ER) chaperone Prolyl 4-hydroxylase, beta polypeptide (P4HB) has previously been identified as a novel target for chemoresistance in glioblastoma multiforme (GBM). Yet its functional roles in glioma carcinogenesis remain elusive. In clinical analysis using human glioma specimens and Gene Expression Omnibus (GEO) profiles, we found that aberrant expression of P4HB was correlated with high-grade malignancy and an angiogenic phenotype in glioma. Furthermore, P4HB upregulation conferred malignant characteristics including proliferation, invasion, migration and angiogenesis in vitro, and increased tumor growth in vivo via the mitogen-activated protein kinase (MAPK) signaling pathway. Pathway analysis suggested genetic and pharmacologic inhibition of P4HB suppressed MAPK expression and its downstream targets were involved in angiogenesis and invasion. This is the first study that demonstrates the oncogenic roles of P4HB and its underlying mechanism in glioma. Since tumor invasion and Vascularisation are typical hallmarks in malignant glioma, our findings uncover a promising anti-glioma mechanism through P4HB-mediated retardation of MAPK signal transduction.

17.
Nat Methods ; 14(10): 983-985, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846087

RESUMEN

Cellular electron cryotomography offers researchers the ability to observe macromolecules frozen in action in situ, but a primary challenge with this technique is identifying molecular components within the crowded cellular environment. We introduce a method that uses neural networks to dramatically reduce the time and human effort required for subcellular annotation and feature extraction. Subsequent subtomogram classification and averaging yield in situ structures of molecular components of interest. The method is available in the EMAN2.2 software package.


Asunto(s)
Criopreservación , Cianobacterias/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Programas Informáticos
18.
J Neurooncol ; 132(3): 393-400, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28293765

RESUMEN

The chemotherapeutic agent temozolomide (TMZ) is widely used in the treatment of glioblastoma multiforme (GBM). Rutin, a citrus flavonoid ecglycoside found in edible plants, has neuroprotective and anticancer activities. This study aimed to investigate the efficacy and the underlying mechanisms of rutin used in combination with TMZ in GBM. In vitro cell viability assay demonstrated that rutin alone had generally low cytotoxic effect, but it enhanced the efficacy of TMZ in a dose-dependent manner. Subcutaneous and orthotopic xenograft studies also showed that tumor volumes were significantly lower in mice receiving combined TMZ/Rutin treatment as compared to TMZ or rutin alone treatment. Moreover, immunoblotting analysis showed that TMZ activated JNK activity to induce protective response autophagy, which was blocked by rutin, resulting in decreased autophagy and increased apoptosis, suggesting that rutin enhances TMZ efficacy both in vitro and in vivo via inhibiting JNK-mediated autophagy in GBM. The combination rutin with TMZ may be a potentially useful therapeutic approach for GBM patient.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/patología , Glioblastoma/patología , Rutina/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Sinergismo Farmacológico , Humanos , Ratones , Ratones Desnudos , Temozolomida , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Sci Rep ; 6: 18773, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26733216

RESUMEN

Nucleolar and spindle-associated protein (NuSAP) is a microtubule-associated protein that functions as a microtubule stabiliser. Depletion of NuSAP leads to severe mitotic defects, however the mechanism by which NuSAP regulates mitosis remains elusive. In this study, we identify the microtubule depolymeriser, mitotic centromere-associated kinesin (MCAK), as a novel binding partner of NuSAP. We show that NuSAP regulates the dynamics and depolymerisation activity of MCAK. Phosphorylation of MCAK by Aurora B kinase, a component of the chromosomal passenger complex, significantly enhances the interaction of NuSAP with MCAK and modulates the effects of NuSAP on the depolymerisation activity of MCAK. Our results reveal an underlying mechanism by which NuSAP controls kinetochore microtubule dynamics spatially and temporally by modulating the depolymerisation function of MCAK in an Aurora B kinase-dependent manner. Hence, this study provides new insights into the function of NuSAP in spindle formation during mitosis.


Asunto(s)
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Aurora Quinasa B/metabolismo , Línea Celular , Humanos , Metafase , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica
20.
Anticancer Res ; 35(12): 6487-95, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26637861

RESUMEN

BACKGROUND: Glioma stem cells are associated for temozolomide-resistance in glioblastoma. Adducin 3 (ADD3) is a cytoskeletal protein associated with chemoresistance but its role in glioblastoma has not been investigated. MATERIALS AND METHODS: Using an in vitro model of glioblastoma cells with acquired temozolomide resistance (D54-MG-R), the expressions of ADD3 and cancer stem cell markers were compared to those in temozolomide-sensitive glioblastoma cells (D54-MG-S). Immunofluorescence staining was used to investigate the expression patterns of ADD3 and cancer stem cell markers in temozolomide resistance and neurospheres of glioblastoma. RESULTS: Chemoresistant cells were found to have up-regulation of ADD3 and CD133 expression. A sub-population of D54-MG-R cells and glioma neurospheres exhibited coexpression of ADD3 with CD133. CONCLUSION: To our knowledge, this is the first report of a possible link between cytoskeletal protein expression, cancer stem cell phenotype and temozolomide resistance in human glioblastoma. This report lays the foundation for further investigation for ADD3 as a potential biomarker and therapeutic target in temozolomide-resistant glioma cells.


Asunto(s)
Antígenos CD/metabolismo , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Proteínas de Unión a Calmodulina/metabolismo , Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Glicoproteínas/metabolismo , Células Madre Neoplásicas/metabolismo , Péptidos/metabolismo , Antígeno AC133 , Antineoplásicos Alquilantes/administración & dosificación , Apoptosis , Línea Celular Tumoral , Dacarbazina/administración & dosificación , Dacarbazina/uso terapéutico , Humanos , Temozolomida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA