Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1429605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161355

RESUMEN

Introduction: The ankle-foot exoskeleton has been demonstrated to help users resist anterior perturbation in the horizontal pelvis plane. However, its effects on perturbations in other directions remain unclear. This paper focuses on how the ankle-foot exoskeleton helps people resist perturbations coming from forward directions within the fan-shaped region in the pelvis horizontal plane. Methods: Firstly, we proposed and validated a hypothesis that the human torque ratio of inversion to plantar flexion torque would change with the perturbation directions of anterior (dir0) and 45° deviating from anterior to left (dir45). Subsequently, based on the regulation demand, we developed an ankle-foot exoskeleton that can adjust the torque ratio delivered to the human body by controlling the forces on two cross-arranged cables. Finally, we evaluated and compared the assistance performance of three powered assistive modes (NM, medBD, and latBD) with the unpowered one (UN) by setting different force pairs in two cables. Results: The results showed that, with the assistance, the margin of stability was increased and the standard deviations of ankle-foot segmental movements were decreased. Meanwhile, the biological inversion torque has a significant difference among the three assistive modes. Compared to the UN, the latBD was shown to reduce the biological inversion torque by 15.8 % and 13.7 % in response to the dir0 and dir45 perturbations, respectively, while the reductions for the NM and medBD were smaller. It was also observed that the torque ratios, generated by the human and the exoskeleton in latBD mode, differed by about 0.1 under dir0 and 0.08 under dir45, while the physiologically similarity of the exoskeleton torque ratio in NM and medBD modes were smaller. Based on the above results, we found that the more physiologically similar the exoskeleton torque ratio, the better the assistive performance. Discussion: The findings demonstrated that the torque-ratio-adjustable exoskeleton could support human resistance to perturbations coming from forward directions within a fan-shaped region in the pelvis horizontal plane and indicated that the exoskeleton's torque ratio should be carefully modulated to match the ratio of the human under various environmental conditions for better assistive performance.

2.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39034687

RESUMEN

The movement of the ankle-foot complex joints is coupled as a result of various physiological and physical constraints. This study introduces a novel approach to the analysis of joint synergies and their physiological basis by focusing on joint rotational directions and the types of muscle contractions. We developed a biomimetic model of the ankle-foot complex with seven degrees of freedom, considering the skeletal configuration and physiological axis directions. Motion capture experiments were conducted with eight participants performing dorsiflexion and plantarflexion in open-chain states, as well as various walking tasks in closed-chain states, across different ground inclinations (±10, ±5, 0 deg) and walking speeds (3 and 4 km h-1). Hierarchical cluster analysis identified joint synergy clusters and motion primitives, revealing that in open-chain movements, plantarflexion of the ankle, tarsometatarsal and metatarsophalangeal joints exhibited synergy with the inversion of the remaining joints in the complex; meanwhile, dorsiflexion was aligned with eversion. During closed-chain movements, the synergies grouping was exchanged in the subtalar, talonavicular and metatarsophalangeal joints. Further analysis showed that in open-chain movements, synergy patterns influenced by multi-joint muscles crossing oblique joint axes contribute to foot motion. In closed-chain movements, these changes in synergistic patterns enhance the propulsion of the center of mass towards the contralateral leg and improve foot arch compliance, facilitating human motion. Our work enhances the understanding of the physiological mechanisms underlying synergistic motion within the ankle-foot complex.


Asunto(s)
Articulación del Tobillo , Músculo Esquelético , Humanos , Articulación del Tobillo/fisiología , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Masculino , Adulto , Adulto Joven , Caminata/fisiología , Pie/fisiología , Articulaciones del Pie/fisiología , Femenino , Contracción Muscular/fisiología
3.
J Neuroeng Rehabil ; 21(1): 87, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807221

RESUMEN

BACKGROUND: The talocrural joint and the subtalar joint are the two major joints of the ankle-joint complex. The position and direction of the exosuit force line relative to these two joint axes can influence ankle motion. We aimed to understand the effects of different force-lines on ankle multidimensional motion. METHODS: In this article, three assistance force line schemes for ankle exosuits were proposed: perpendicular to the talocrural joint axis (PT), intersecting with the subtalar joint axis (IS), and parallel to the triceps surae (PTS). A theoretical model was proposed to calculate the exosuit's assistance moment. Seven participants completed four experimental tests of ankle plantarflexion, including three passive motions assisted by the PT, PTS and IS schemes, and one active motion without exosuit assistance (Active). RESULTS: The simulation results demonstrated that all three exosuits were able to produce significant moments of ankle plantarflexion. Among these, the PT scheme exhibited the highest moments in all dimensions, followed by the PTS and IS schemes. The experimental findings confirmed the effectiveness of all three exosuit schemes in assisting ankle plantarflexion. Additionally, as the assistive force lines approached the subtalar joint, there was a decrease in ankle motion assisted by the exosuits in non-plantarflexion directions, along with a reduction in the average distance of ankle angle curves relative to active ankle motion. Furthermore, the linear correlation coefficients between inversion and plantarflexion, adduction and plantarflexion, and adduction and inversion gradually converged toward active ankle plantarflexion motion. CONCLUSIONS: Our research indicates that the position of the exosuit force line to the subtalar joint has a significant impact on ankle inversion and adduction. Among all three schemes, the IS, which has the closest distance to the subtalar joint axes, has the greatest kinematic similarity to active ankle plantarflexion and might be a better choice for ankle assistance and rehabilitation.


Asunto(s)
Articulación del Tobillo , Humanos , Articulación del Tobillo/fisiología , Masculino , Fenómenos Biomecánicos , Adulto , Dispositivo Exoesqueleto , Adulto Joven , Rango del Movimiento Articular/fisiología , Femenino , Movimiento/fisiología , Modelos Teóricos , Tobillo/fisiología
4.
Opt Express ; 31(22): 35864-35879, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017749

RESUMEN

It is shown that the thermo-optic (TO) coefficients of various waveguide modes of a sub-wavelength grating (SWG)-assisted strip waveguide is closely dependent on the various waveguide parameters with different dependencies, including the SWG width, strip waveguide width, duty cycle, and pitch. This offers what we believe to be new degrees of freedom in the design of TO coefficients for integrated-optic waveguides, opening the door to engineering the TO coefficients of individual spatial modes or polarization states using sub-wavelength structures. Such a capability is expected to offer new design possibilities for a variety of integrated photonic, thermo-optic devices. To demonstrate the application of the concept, a mode-insensitive switch on silicon-on-insulator using a TO coefficient-engineered SWG as a mode-independent, thermo-optic phase shifter is designed and experimentally demonstrated. The experimental results show that the switching powers of the TE0-TE2 modes are only ∼29 mW, and the maximum extinction ratios for the cross (bar) states are 38.2 dB (31 dB), 37.9 dB (37 dB), and 31.9 dB (20.5 dB) for the TE0-TE2 modes, respectively, at the wavelength of 1550 nm.

5.
Opt Express ; 31(22): 37284-37301, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017861

RESUMEN

Asymmetric Y-junctions, compared with mode coupling-based devices, possess considerably smaller wavelength dependence and thus are more promising for ultra-broadband mode (de)multiplexing in integrated optics. However, these devices also feature relatively high mode crosstalk and insertion loss. Here, we show that the mode crosstalk and loss of an asymmetric Y-junction can be significantly reduced by optimizing the waveguide shape of the Y-junction using an adjoint-based inverse design. Based on such inverse-designed asymmetric Y-junctions, we realize ultra-compact, broadband, and low crosstalk silicon photonic TE00 & TE1 and TE0 & TE2 mode (de)multiplexers with sizes of only 4.5 × 1.2 µm2 and 6 × 1.4 µm2, respectively. From simulations it is shown that the TE0 & TE1 and TE0 & TE2 mode (de)multiplexers contain wide bandwidths of 160 nm (1460-1620 nm) and 140 nm (1460-1600 nm), respectively, over which the mode crosstalks are below about -20 dB, and the losses are <0.41 dB and <0.88 dB, respectively. The experimental results show that in the corresponding TE0 & TE1 and TE0 & TE2 mode division multiplexing systems, the crosstalks are less than -15.5 dB and -15 dB over the spectral ranges of 1453-1580 nm and 1460-1566 nm, respectively, and the losses are <1.7 dB at 1520 nm and <8.24 dB over the entire measured wavelength range.

6.
Opt Express ; 31(12): 19347-19361, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381351

RESUMEN

We present chirped anti-symmetric multimode nanobeams (CAMNs) based on silicon-on-insulator platforms, and describe their applications as broadband, compact, reflection-less, and fabrication-tolerant TM-pass polarizers and polarization beam splitters (PBSs). The anti-symmetric structural perturbations of a CAMN ensure that only contradirectional coupling between symmetric and anti-symmetric modes is possible, which can be exploited to block the unwanted back reflection of the device. The new possibility of introducing a large chirp on an ultra-short nanobeam-based device to overcome the operation bandwidth limitation due to the coupling coefficient saturation effect is also shown. The simulation results show that an ultra-compact CAMN with a length of ∼4.68 um can be used to develop a TM-pass polarizer or a PBS with an ultra-broad 20 dB extinction ratio (ER) bandwidth of >300 nm and an average insertion loss of <1.3 dB. The CAMN-based polarizer and PBS were fabricated and experimentally characterized in a wavelength range from 1507 to 1575 nm. The measured ERs were >20 dB over the entire tested wavelength range and the average insertion losses were <0.5 dB for both devices. The mean reflection suppression ratio of the polarizer was ∼26.4 dB. Large fabrication tolerances of ±60 nm in the waveguide widths of the devices were also demonstrated.

7.
J Theor Biol ; 519: 110646, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33636203

RESUMEN

Among the Hominidae family of primates, Homo is characterized by more economical bipedal walking. Over the course of evolution towards bipedalism, the foot becomes the only organ directly interacting with substrate and likely influence the bipedal walking economy. However, working out the energy expenditure in bipedal walking from the specific aspect of foot morphology is still challenging, which hinders the understanding of the evolution of both hominid feet and economical bipedal walking. Here we present a functional model to quantitatively assess bipedal walking expenditure of energy from hominid foot morphology. According to our results, the feet of Homo are most suited to economical bipedal walking among hominids. However, the genus whose feet possess second best ability for economical bipedal walking is not our closest relative Pan, but is Gorilla. Using phylogenetically informed morphometric analyses, we further infer the evolutionary changes of hominid foot morphology and investigate the corresponding variation of bipedal walking expenditure. Our results reveal the economical bipedal walking benefits from the morphological changes of human foot after descending from the last common ancestor of hominids. Conversely, the foot morphologies of great apes reflect selections for other locomotor modes, at cost of larger energy expenditure in bipedal walking.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Pie , Gastos en Salud , Caminata
8.
J Mech Behav Biomed Mater ; 108: 103791, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32469716

RESUMEN

Bone cutting with high efficiency as well as low levels of forces and damage has a great significance for orthopaedic surgeries. Due to the brittleness and anisotropy of cortical bone, a conventional cutting process can cause irregular crack propagation and fractured bone chip, affecting the tissue removal process and postoperative recovery. In this paper, a high-frequency impact cutting method is investigated, and its effect on fracture propagation, chip formation and cutting forces is studied for orthogonal cutting. Experimental results show that cracks are deflected by cement lines in conventional cutting, forming fractured blocks or split chips. In impact cutting, the cutting-induced fractures expand along a main shear direction, generating small pieces of triangular segmented chips. Cutting forces are significantly reduced with vibration-induced impacts; especially, the main cutting force is nearly 70% lower than that in the conventional cutting. The main reason for this is much higher strain rates in high-frequency impact cutting than in a conventional process, and direct penetration of fractures across the osteonal matrix without deflections along the cement lines. This results in a straighter path along the main shear plane and totally different chip morphology; so, a lower consumption of cutting energy in the main shear direction reduces the macroscopic cutting force. The results of this study have an important theoretical and practical value for revealing the mechanism of impact cutting, improving the efficiency of osteotomy and supporting the innovation in bone surgical instruments.


Asunto(s)
Hueso Cortical , Fracturas Óseas , Huesos , Fracturas Óseas/cirugía , Osteón , Humanos , Fenómenos Mecánicos
9.
J Mech Behav Biomed Mater ; 104: 103618, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31929098

RESUMEN

ANALYSIS: of a mechanism of bone cutting has an important theoretical and practical significance for orthopaedic surgeries. In this study, the mechanism of material removal in orthogonal cutting of cortical bone is investigated. Chip morphology and crack propagation in cortical bone for various cutting directions and depth-of-cut (DOC) levels are analysed, with consideration of microstructural and sub-microstructural features and material anisotropy. Effects of different material properties of osteons, interstitial matrix and cement lines on chip morphology and crack propagation are elucidated for different cutting directions. This study revealed that differences in chip morphology for various DOCs were due to comparable sizes of the osteons, lamellae and DOC. Acquired force signals and recorded high-speed videos revealed the reasons of fluctuations of dynamic components in tests. Meanwhile, a frequency-domain analysis of force signals showed a frequency difference between formation of a bulk fractured chip and small debris for different cutting directions. In addition, SEM images of the top and side surfaces of the machined bone were obtained. Thus, the analysis of the cutting force and surface damage validated the character of chip formation and explained the material-removal mechanism. This study reveals the mechanism of chip formation in the orthogonal cutting of the cortical bone, demonstrating importance of the correlation between the chip morphologies, the depth of cut and the microstructure and sub-microstructure of the cortical bone. For the first time, it assessed the fluctuations of cutting forces, accompanying chip formation, in time and frequency domains. These findings provide fundamental information important for analysis of cutting-induced damage of the bone tissue, optimization of the cutting process and clinical applications of orthopaedic instruments.


Asunto(s)
Hueso Cortical , Procedimientos Ortopédicos , Huesos , Osteón , Fenómenos Mecánicos
10.
Ultrasonics ; 78: 70-82, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28324776

RESUMEN

This paper aims to elucidate the effect of ultrasonically assisted cutting (UAC) on microstructure in a machined surface and a chip of Ti6Al4V alloy. To investigate microstructural evolution, a FE-based cutting model with an enhanced material formulation and temperature dependent material properties was developed. A Johnson-Mehl-Avrami-Kolmogorov (JMAK) model for the Ti6Al4V alloy was employed to simulate dynamic recrystallization and predict a resultant grain size. Due to a specific thermomechanical load in UAC, the distributions of strains, strain rates and temperatures in a workpiece in the machining process were investigated. In this study, five points under the machined surface and ten points under the unmachined one were tracked to compare the evolution of a grain size and its average magnitude in the alloy subjected to conventional cutting (CC) and UAC. Besides of numerical modelling and experimental studies for the resultant grain size were compared and additional validation using microhardness measurements were conducted. The results showed that the average grain size of the machined surface and the chip in case of UAC was larger and more uniform than that in case of CC. The study also presents discussions about the effect of a vibration amplitude, a feed rate and a cutting speed on the average grain size in machining of Ti6Al4V. The comparison between CC and UAC indicates that the change in average grain size in UAC was smaller than that in CC, thus demonstrating a lower level of damage in UAC.

11.
Gait Posture ; 32(4): 475-81, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20692160

RESUMEN

The redundant kinematic structure of upper extremity (UE) provides it with increased dexterity in activities of daily living (ADL). Most functional tasks during ADL can be implemented in various positions; however, only some routine trajectories are employed in healthy humans. Exploring motion ability and analyzing dexterity are clinically helpful in understanding the motion principles of the UE during ADL. The aim of this work was to develop a qualitative and quantitative evaluation method for unconstrained movement analysis of the UE. Ten healthy male volunteers with no UE pathology were tested based on a kinematic model proposed in this paper which follows the ISB recommendations. The dexterity measure (DM) and manipulability ellipsoid (ME) were used to evaluate the dexterity distribution and motion ability in space. Representative dexterity trajectories and corresponding ellipsoids were determined for the ADL tasks. The results of the study showed that there was a most dexterous posture for each functional task. The UE movement followed an approximately optimal kinematic performance trajectory when the hand moved in front of the thorax during ADL.


Asunto(s)
Actividades Cotidianas , Extremidad Superior/fisiología , Adulto , Fenómenos Biomecánicos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Postura/fisiología , Rotación , Análisis y Desempeño de Tareas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA