Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Neurobiol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230867

RESUMEN

Cerebral ischemia‒reperfusion injury (CIRI) is a type of secondary brain damage caused by reperfusion after ischemic stroke due to vascular obstruction. In this study, a CIRI diagnostic model was established by identifying hypoxia-related differentially expressed genes (HRDEGs) in patients with CIRI. The ischemia‒reperfusion injury (IRI)-related datasets were downloaded from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ), and hypoxia-related genes in the Gene Cards database were identified. After the datasets were combined, hypoxia-related differentially expressed genes (HRDEGs) expressed in CIRI patients were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the HRDEGs were performed using online tools. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed with the combined gene dataset. CIRI diagnostic models based on HRDEGs were constructed via least absolute shrinkage and selection operator (LASSO) regression analysis and a support vector machine (SVM) algorithm. The efficacy of the 9 identified hub genes for CIRI diagnosis was evaluated via mRNA‒microRNA (miRNA) interaction, mRNA-RNA-binding protein (RBP) network interaction, immune cell infiltration, and receiver operating characteristic (ROC) curve analyses. We then performed logistic regression analysis and constructed logistic regression models based on the expression of the 9 HRDEGs. We next established a nomogram and calibrated the prediction data. Finally, the clinical utility of the constructed logistic regression model was evaluated via decision curve analysis (DCA). This study revealed 9 critical genes with high diagnostic value, offering new insights into the diagnosis and selection of therapeutic targets for patients with CIRI. : Not applicable.

2.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205140

RESUMEN

Accurate and precise rigid registration between head-neck computed tomography (CT) and cone-beam computed tomography (CBCT) images is crucial for correcting setup errors in image-guided radiotherapy (IGRT) for head and neck tumors. However, conventional registration methods that treat the head and neck as a single entity may not achieve the necessary accuracy for the head region, which is particularly sensitive to radiation in radiotherapy. We propose ACSwinNet, a deep learning-based method for head-neck CT-CBCT rigid registration, which aims to enhance the registration precision in the head region. Our approach integrates an anatomical constraint encoder with anatomical segmentations of tissues and organs to enhance the accuracy of rigid registration in the head region. We also employ a Swin Transformer-based network for registration in cases with large initial misalignment and a perceptual similarity metric network to address intensity discrepancies and artifacts between the CT and CBCT images. We validate the proposed method using a head-neck CT-CBCT dataset acquired from clinical patients. Compared with the conventional rigid method, our method exhibits lower target registration error (TRE) for landmarks in the head region (reduced from 2.14 ± 0.45 mm to 1.82 ± 0.39 mm), higher dice similarity coefficient (DSC) (increased from 0.743 ± 0.051 to 0.755 ± 0.053), and higher structural similarity index (increased from 0.854 ± 0.044 to 0.870 ± 0.043). Our proposed method effectively addresses the challenge of low registration accuracy in the head region, which has been a limitation of conventional methods. This demonstrates significant potential in improving the accuracy of IGRT for head and neck tumors.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Cabeza/diagnóstico por imagen , Cuello/diagnóstico por imagen
3.
J Biol Chem ; 300(9): 107699, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173949

RESUMEN

Marine microalgae are the primary producers of ω3 polyunsaturated fatty acids (PUFAs), such as octadecapentaenoic acid (OPA, 18:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for food chains. However, the biosynthetic mechanisms of these PUFAs in the algae remain elusive. To study how these fatty acids are synthesized in microalgae, a series of radiolabeled precursors were used to trace the biosynthetic process of PUFAs in Emiliania huxleyi. Feeding the alga with 14C-labeled acetic acid in a time course showed that OPA was solely found in glycoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) synthesized plastidically by sequential desaturations while DHA was exclusively found in phospholipids synthesized extraplastidically. Feeding the alga with 14C-labeled α-linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) showed that DHA was synthesized extraplastidically from fed ALA and LA, but not from OA, implying that the aerobic pathway of DHA biosynthesis is incomplete with missing a Δ12 desaturation step. The in vitro enzymatic assays with 14C-labeled malonyl-CoA showed that DHA was synthesized from acetic acid by a PUFA synthase. These results provide the first and conclusive biochemistry evidence that OPA is synthesized by a plastidic aerobic pathway through sequential desaturations with the last step of Δ3 desaturation, while DHA is synthesized by an extraplastidic anaerobic pathway catalyzed by a PUFA synthase in the microalga.

4.
Plant Mol Biol ; 114(5): 90, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172265

RESUMEN

ELO-like elongase is a condensing enzyme elongating long chain fatty acids in eukaryotes. Eranthis hyemalis ELO-like elongase (EhELO1) is the first higher plant ELO-type elongase that is highly active in elongating a wide range of polyunsaturated fatty acids (PUFAs) and some monounsaturated fatty acids (MUFAs). This study attempted using domain swapping and site-directed mutagenesis of EhELO1 and EhELO2, a close homologue of EhELO1 but with no apparent elongase activity, to elucidate the structural determinants critical for catalytic activity and substrate specificity. Domain swapping analysis of the two showed that subdomain B in the C-terminal half of EhELO1 is essential for MUFA elongation while subdomain C in the C-terminal half of EhELO1 is essential for both PUFA and MUFA elongations, implying these regions are critical in defining the architecture of the substrate tunnel for substrate specificity. Site-directed mutagenesis showed that the glycine at position 220 in the subdomain C plays a key role in differentiating the function of the two elongases. In addition, valine at 161 and cysteine at 165 in subdomain A also play critical roles in defining the architecture of the deep substrate tunnel, thereby contributing significantly to the acceptance of, and interaction with primer substrates.


Asunto(s)
Acetiltransferasas , Elongasas de Ácidos Grasos , Mutagénesis Sitio-Dirigida , Elongasas de Ácidos Grasos/metabolismo , Elongasas de Ácidos Grasos/genética , Especificidad por Sustrato , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/química , Ácidos Grasos Insaturados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Secuencia de Aminoácidos , Ácidos Grasos/metabolismo , Modelos Moleculares
5.
Nucleic Acids Res ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087525

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedesspp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV replication cycle is poorly understood and specific antiviral therapeutics are lacking. In the current study, we identify host cell Musashi RNA binding protein-2 (MSI-2) as a proviral factor. MSI-2 depletion and small molecule inhibition assays demonstrated that MSI-2 is required for efficient CHIKV genome replication. Depletion of both MSI-2 and MSI-1 homologues was found to synergistically inhibit CHIKV replication, suggesting redundancy in their proviral function. Electromobility shift assay (EMSA) competition studies demonstrated that MSI-2 interacts specifically with an RNA binding motif within the 5' untranslated region (5'UTR) of CHIKV and reverse genetic analysis showed that mutation of the binding motif inhibited genome replication and blocked rescue of mutant virus. For the first time, this study identifies the proviral role of MSI RNA binding proteins in the replication of the CHIKV genome, providing important new insight into mechanisms controlling replication of this significant human pathogen and the potential of a novel therapeutic target.

6.
Heliyon ; 10(14): e34600, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149038

RESUMEN

Objective: The aim of this study was to elucidate the genetic pathways associated with Moyamoya disease (MMD) and Moyamoya syndrome (MMS), compare the functional activities, and validate relevant related genes in an independent dataset. Methods: We conducted a comprehensive search for genetic studies on MMD and MMS across multiple databases and identified related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments analyses were performed for these genes. Commonly shared genes were selected for further validation in the independent dataset, GSE189993. The Sangerbox platform was used to perform statistical analysis and visualize the results. P<0.05 indicated a statistically significant result. Results: We included 52 MMD and 51 MMS-related publications and identified 126 and 51 relevant genes, respectively. GO analysis for MMD showed significant enrichment in cytokine activity, cell membrane receptors, enzyme binding, and immune activity. A broader range of terms was enriched for MMS. KEGG pathway analysis for MMD highlighted immune and cellular activities and pathways related to MMS prominently featured inflammation and metabolic disorders. Notably, nine overlapping genes were identified and validated. The expressions of RNF213, PTPN11, and MTHFR demonstrated significant differences in GSE189993. A combined receiver operating characteristic curve showed high diagnostic accuracy (AUC = 0.918). Conclusions: The findings indicate a close relationship of MMD with immune activity and MMS with inflammation, metabolic processes and other environmental factors in a given genetic background. Differentiating between MMD and MMS can enhance the understanding of their pathophysiology and inform the strategies for their diagnoses and treatment.

7.
J Clin Hypertens (Greenwich) ; 26(8): 879-889, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39037169

RESUMEN

It remained debates on metabolic-related disorders in patients with primary aldosteronism (PA) and essential hypertension (EH). A systematic review and meta-analysis was conducted to explore the prevalence of metabolic syndrome (MS) and the related indicators in PA and EH. PubMed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials from their commencement to December 2023 were searched for eligible studies. The meta-analysis was performed by Review Manager 5.3 and STATA 15.1 software. A total of 12 studies were included, revealing that there was no significant difference between PA and EH in the prevalence of MS (1.27[0.92, 1.76], p = 0.14) with higher heterogeneity (I2 = 68%, p = 0.0002), while it became significant different (1.45[1.17, 1.81], p = 0.0008) and lower heterogeneity (I2 = 26%, p = 0.19) in patients who were overweight or obese by subgroup analysis. Higher systolic blood pressure (2.99[0.67, 5.31], p = 0.01; I2 = 43%, p = 0.06) and diastolic blood pressure (2.10[0.82, 3.38], p = 0.001; I2 = 36%, p = 0.11) with lower heterogeneity, and lower triglyceride in PA group with higher heterogeneity (-0.23[-0.37, -0.09], p = 0.001; I2 = 76%, p < 0.0001) were observed. No significant difference was found in other indicators. This study showed a higher prevalence of MS in patients who were overweight or obese with PA. However, it was not the same in these patients who were in normal weight. More researches were needed to explore the relationship between PA and metabolism of glucose and lipid.


Asunto(s)
Hipertensión Esencial , Hiperaldosteronismo , Síndrome Metabólico , Síndrome Metabólico/epidemiología , Hiperaldosteronismo/epidemiología , Hiperaldosteronismo/complicaciones , Humanos , Prevalencia , Hipertensión Esencial/epidemiología , Hipertensión Esencial/fisiopatología , Presión Sanguínea/fisiología , Femenino , Persona de Mediana Edad , Masculino , Obesidad/epidemiología , Obesidad/complicaciones , Adulto , Sobrepeso/epidemiología , Sobrepeso/complicaciones
8.
Front Microbiol ; 15: 1381097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056009

RESUMEN

Emiliania huxleyi is a marine microalga playing a significant ecological and biogeochemical role in oceans. It can produce several polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA, 22:6-4,7,10,13,16,19) and octadecapentaenoic acid (OPA, 18:5-3,6,9,12,15), providing a primary source for nutritionally important ω3 PUFAs in the marine food chain. However, the biosynthesis of these PUFAs in this organism is not well understood. In this study, a full length plastidial ω3 desaturase cDNA (EhN3) was cloned from this alga. Heterologous expression of EhN3 with and without the chloroplast targeting peptide (cTP) in cyanobacterium Synechococcus elongatus showed that it possessed high desaturation activity toward C18-ω6 PUFAs, linoleic acid (LA, 18:2-9,12), γ-linolenic acid (GLA, 18:3-6,9,12), and C20-ω6 PUFAs, dihomo-γ-linolenic acid (DGLA, 20:3-8,11,14) and arachidonic acid (ARA, 20:4-5,8,11,14) that were exogenously supplied. Desaturation efficiency could reach almost 100% in a time course. On the other hand, when expressed in Saccharomyces cerevisiae, EhN3 with and without cTP did not exhibit any activity. Lipid analysis of Synechococcus transformants expressing EhN3 showed that it utilized galactolipids as substrates. Transcriptional expression analysis revealed that the expression of the gene increased while the growth temperature decreased, which was correlated with the increased production of ω3-PUFAs, particularly OPA. This is the first report of a plastidial ω3 desaturase from microalgae that can effectively introduce an ω3 double bond into both C18-ω6 and C20-ω6 PUFAs. EhN3 might also be one of the key enzymes involved in the biosynthesis of OPA in E. huxleyi through the plastidial aerobic pathway.

9.
Opt Express ; 32(10): 17657-17666, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858943

RESUMEN

Tin diselenide (SnSe2), a layered transition metal dichalcogenide (TMDC), stands out among other TMDCs for its extraordinary photoactive ability and low thermal conductivity. Consequently, it has stimulated many influential researches on photodetectors, ultrafast pulse shaping, thermoelectric devices, etc. However, the carrier mobility in SnSe2, as determined experimentally, remains limited to tens of cm2V-1s-1. This limitation poses a challenge for achieving high-performance SnSe2-based devices. Theoretical calculations, on the other hand, predict that the carrier mobility in SnSe2 can reach hundreds of cm2V-1s-1, approximately one order of magnitude higher than experimental value. Interestingly, the carrier mobility could be underestimated significantly in long-range transportation measurements due to the presence of defects and boundary scattering effects. To address this discrepancy, we employ optic pump terahertz probe spectroscopy to access the photoinduced dynamical THz photoconductivity of SnSe2. Our findings reveal that the intrinsic carrier mobility in conventional SnSe2 single crystal is remarkably high, reaching 353.2 ± 37.7 cm2V-1s-1, consistent with the theoretical prediction. Additionally, dynamical THz photoconductivity measurements reveal that the SnSe2 crystal containing rich defects efficiently capture photoinduced conduction-band electrons and valence-band holes with time constants of ∼20 and ∼200 ps, respectively. Meanwhile, we observe an impulsively stimulated Raman scattering at 0.60 THz. Our study not only demonstrates ultrafast THz spectroscopy as a reliable method for determining intrinsic carrier mobility and detection of low frequency coherent Raman mode in materials but also provides valuable reference for the future application of high-performance SnSe2-based devices.

10.
Front Immunol ; 15: 1410457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765013

RESUMEN

Introduction: CM313 is currently under clinical investigation for treatments of multiple myeloma, systemic lupus erythematosus, and immune thrombocytopenia. We aimed to report the preclinical profile of the novel therapeutic anti-CD38 monoclonal antibody (mAb) CM313, with an emphasis on the difference with other CD38-targeting mAb. Methods: The binding of CM313 to CD38 recombinant protein across species was assessed using ELISA. The binding of CM313 to CD38-positive (CD38+) cells was detected using flow cytometry assays. CM313-induced complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis on different CD38+ cells were assessed by LDH release assays or flow cytometry assays. The effect of CM313 on CD38 enzymatic activity was measured using fluorescence spectroscopy. CM313 immunotoxicity in human blood was assessed using flow cytometry assays, ELISA, and LDH release assays. Anti-tumor activity of CM313 was assessed in multiple mouse xenograft models. Safety profile of CM313 were evaluated in cynomolgus monkeys and human CD38 transgenic (B-hCD38) mice. Results: There exist unique sequences at complementarity-determining regions (CDR) of CM313, which facilitates its affinity to CD38 is consistently higher across a spectrum of CD38+ cell lines than daratumumab. In vitro studies showed that CM313 induces comparable killing activity than daratumumab, including ADCC, CDC, ADCP, apoptosis induced by Fc-mediated cross-linking, and effectively inhibited the enzymatic activity of CD38. However, CM313 showed more potent CDC than isatuximab. In vivo, CM313 dose-dependently inhibited xenograft tumor growth, both as a monotherapy and in combination with dexamethasone or lenalidomide. Furthermore, CM313 was well tolerated with no drug-related clinical signs or off-target risks, as evidenced by 4-week repeat-dose toxicology studies in cynomolgus monkeys and B-hCD38 mice, with the later study showing no observed adverse effect level (NOAEL) of 300mg/kg once weekly. Discussion: CM313 is a novel investigational humanized mAb with a distinct CDR sequence, showing comparable killing effects with daratumumab and stronger CDC activity than isatuximab, which supports its clinical development.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales , Citotoxicidad Celular Dependiente de Anticuerpos , Animales , Femenino , Humanos , Ratones , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antineoplásicos Inmunológicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Macaca fascicularis , Glicoproteínas de Membrana , Ratones Transgénicos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
ACS Appl Mater Interfaces ; 16(23): 30589-30597, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814136

RESUMEN

Vertical van der Waals heterostructures composed of graphene (Gr) and transition metal dichalcogenides (TMDs) have created a fascinating platform for exploring optical and electronic properties in the two-dimensional limit. Numerous studies have focused on Gr/TMDs heterostructures to elucidate the underlying mechanisms of charge-energy transfer, quasiparticle formation, and relaxation following optical excitation. Nevertheless, a comprehensive understanding of interfacial charge separation and subsequent dynamics in graphene-based heterostructures remains elusive. Here, we have investigated the carrier dynamics of Gr-MoS2 heterostructures (including Gr/MoS2 and MoS2/Gr stacking sequences) grown on a fused silica substrate under varying photoexcitation energies by comprehensive ultrafast means, including time-resolved terahertz (THz) spectroscopy, THz emission spectroscopy, and transient absorption spectroscopy. Our findings highlight the impact of the substrate electric field on the efficiency of modulating the interfacial charge transfer (CT). Specifically, the optical excitation in Gr/MoS2 generates thermal electron injection from the graphene layer into the MoS2 layer with photon energy well below A-exciton of MoS2, whereas the interfacial CT in the MoS2/Gr is blocked by the electric field of the substrate. In turn, photoexcitation of the A exciton above leads to hole transfer from MoS2 to graphene, which occurs for both Gr-MoS2 heterostructures with opposite stacking orders, resulting in the opposite orientations of the interfacial photocurrent, as directly demonstrated by the out-of-phase THz emission. Moreover, we demonstrate that the recombination time of interfacial exciton is approximately ∼18 ps, whereas the defect-assisted interfacial recombination occurs on a time scale of ∼ns. This study provides valuable insights into the interplay between interfacial CT, substrate effects, and defect engineering in Gr-TMDs heterostructures, thereby facilitating the development of next-generation optoelectronic devices.

12.
Front Endocrinol (Lausanne) ; 15: 1343704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586461

RESUMEN

Background: To explore the diagnostic accuracy and the optimal cutoff value between the saline infusion test (SIT) and captopril challenge test (CCT) [including the value and suppression of plasma aldosterone concentration (PAC)] for primary aldosteronism (PA) diagnosing. Methods: A total of 318 patients with hypertension were consecutively enrolled, including 126 patients with PA and 192 patients with essential hypertension (EH), in this observational study. The characteristics of patients and laboratory examinations were collected and compared. The comparison between SIT and CCT was carried by drawing the receiver operator characteristic curve (ROC) and calculating the area under the curve (AUC) to explore the diagnostic accuracy and the optimal cutoff value. Results: The average age was 51.59 ± 10.43 in the PA group and 45.72 ± 12.44 in the EH group (p<0.05). The optimal cutoff value was 10.7 ng/dL for post-CCT PAC, 6.8 ng/dL for post-SIT PAC, and 26.9% for suppression of post-CCT PAC. The diagnostic value of post-CCT PAC was the highest with 0.831 for the AUC and 0.552 for the Youden index. The optimal cutoff value for patients who were <50 years old was 11.5 ng/dL for post-CCT PAC and 8.4 ng/dL for post-SIT PAC. The suppression of post-CCT PAC turned to 18.2% for those of age 50 or older. Conclusion: Compared with SIT, CCT had a higher diagnostic value when post-CCT PAC was used as the diagnostic criterion in Chinese people, while the selection of diagnostic thresholds depended on patient age.


Asunto(s)
Captopril , Pueblos del Este de Asia , Hiperaldosteronismo , Humanos , Adulto , Persona de Mediana Edad , Hiperaldosteronismo/diagnóstico , Aldosterona , Hipertensión Esencial/diagnóstico , China/epidemiología
13.
Small ; 20(30): e2310584, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38470191

RESUMEN

Renewable energy is crucial for sustainable future, and Cu2ZnSnS4 (CZTS) based solar cells shine as a beacon of hope. CZTS, composed of abundant, low-cost, and non-toxic elements, shares similarities with Cu(In,Ga)Se2 (CIGS). However, despite its promise and appealing properties for solar cells, CZTS-based solar cells faces performance challenges owing to inherent issues with CZTS material, and conventional substrate structure complexities. This review critically examines these roadblocks, explores ongoing efforts and breakthroughs, providing insight into the evolving landscape of CZTS-based solar cells research. Furthermore, as an optimistic turn in the field, the review first highlights the crucial need to transition to a superstrate structure for CZTS-based single junction devices, and summarizes the substantial progress made in this direction. Subsequently, dive into the discussion about the fascinating realm of CZTS-based tandem devices, providing an overview of the existing literature as well as outlining the possible potential strategies for enhancing the efficiency of such devices. Finally, the review provides a useful outlook that outlines the priorities for future research and suggesting where efforts should concentrate to shape the future of CZTS-based solar cells.

14.
J Am Heart Assoc ; 13(4): e030427, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38348775

RESUMEN

BACKGROUND: This case-control study aimed to determine whether there were differences between patients with essential hypertension with accessory renal arteries (ARAs) and those without ARAs. METHODS AND RESULTS: The enrolled patients with essential hypertension were divided into the ARA group (n=200) and control group without ARAs (n=238). After propensity matching, 394 patients (197 in each of the 2 groups), were included. The 24-hour BP (4.33/2.43 mm Hg) and daytime BP (4.48/2.61 mm Hg) of patients in the ARA group were significantly higher than those of the control group (P<0.05). The flow-mediated dilation was lower in the ARA group (5.98±2.70 versus 5.18±2.66; P<0.05). In correlation analysis, the horizontal plasma aldosterone concentration had the highest correlation with 24-hour, daytime, and nighttime systolic BP (r=0.263, 0.247, and 0.243, respectively; P<0.05) and diastolic BP (r=0.325, 0.298, and 0.317, respectively; P<0.05). As for multivariate regression analysis, plasma aldosterone concentration was a significant risk factor for elevated 24-hour, daytime, and nighttime systolic BP (ß=0.249 [95% CI, 0.150-0.349], 0.228 [95% CI, 0.128-0.329], and 0.282 [95% CI, 0.187-0.377], respectively; P<0.05) and elevated diastolic BP (ß=0.289 [95% CI, 0.192-0.385], 0.256 [95% CI, 0.158-0.353], and 0.335 [95% CI, 0.243-0.427], respectively; P<0.05). Direct renin concentration was also a risk factor for 24-hour and daytime BPs, whereas heart rate was a risk factor correlated with 24-hour, daytime, and nighttime diastolic BP (all P<0.05). For the mixed-effects model for repeated measures, the results were similar to results of the multivariate regression analysis (all P<0.05). CONCLUSIONS: ARAs could contribute a higher BP of patients with essential hypertension and might promote the development of essential hypertension. The mechanism might be related to overactivation of the renin-angiotensin-aldosterone system and sympathetic nervous system.


Asunto(s)
Hipertensión , Humanos , Aldosterona , Estudios de Casos y Controles , Arteria Renal , Monitoreo Ambulatorio de la Presión Arterial , Presión Sanguínea/fisiología , Hipertensión Esencial/diagnóstico
15.
Adv Mater ; 36(3): e2307733, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850716

RESUMEN

The Cd-free Cu2 ZnSnS4 (CZTS) solar cell is an ideal candidate for producing low-cost clean energy through green materials owing to its inherent environmental friendliness and earth abundance. Nevertheless, sulfide CZTS has long suffered from severe open-circuit voltage (VOC ) deficits, limiting the full exploitation of performance potential and further progress. Here, an effective strategy is proposed to alleviate the nonradiative VOC loss by manipulating the phase evolution during the critical kesterite phase formation stage. With a Ge cap layer on the precursor, premature CZTS grain formation is suppressed at low temperatures, leading to fewer nucleation centers at the initial crystallization stage. Consequently, the CZTS grain formation and crystallization are deferred to high temperatures, resulting in enhanced grain interior quality and less unfavorable grain boundaries in the final film. As a result, a champion efficiency of 10.7% for Cd-free CZTS solar cells with remarkably high VOC beyond 800 mV (63.2% Schockley-Queisser limit) is realized, indicating that nonradiative recombination is effectively inhibited. This strategy may advance other compound semiconductors seeking high-quality crystallization.

16.
Small ; 20(9): e2307179, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857576

RESUMEN

Rechargeable battery devices with high energy density are highly demanded by the modern society. The use of lithium (Li) anodes is extremely attractive for future rechargeable battery devices. However, the notorious Li dendritic and instability of solid electrolyte interface (SEI) issues pose series of challenge for metal anodes. Here, based on the inspiration of in situ photoelectrochemical engineering, it is showed that a tailor-made composite photoanodes with good photoelectrochemical properties (Li affinity property and photocatalytic property) can significantly improve the electrochemical deposition behavior of Li anodes. The light-assisted Li anode is accommodated in the tailor-made current collector without uncontrollable Li dendrites. The as-prepared light-assisted Li metal anode can achieve the in situ stabilization of SEI layer under illumination. The corresponding in situ formation mechanism and photocatalytic mechanism of composite photoanodes are systematically investigated via DFT theoretical calculation, ex situ UV-vis and ex situ XPS characterization. It is worth mentioning that the as-prepared composite photoanodes can adapt to the ultra-high current density of 15 mA cm-2 and the cycle capacity of 15 mAh cm-2 under light, showing no dendritic morphology and low hysteresis voltage. This work is of great significance for the commercialization of new generation Li metal batteries.

17.
J Gen Virol ; 104(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37862073

RESUMEN

Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Animales , Virus Chikungunya/genética , Codón de Terminación/genética , Codón de Terminación/metabolismo , Fiebre Chikungunya/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
18.
Nanomaterials (Basel) ; 13(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37887913

RESUMEN

Massive emissions of carbon dioxide (CO2) have caused environmental issues like global warming, which needs to be addressed. Researchers have developed numerous methods to reduce CO2 emissions. Among these, photoelectrochemical (PEC) CO2 reduction is a promising method for mitigating CO2 emissions. Recently, Cu2ZnSnS4 (CZTS) has been recognized as good photocathode candidate in PEC systems for CO2 reduction due to its earth abundance and non-toxicity, as well as its favourable optical/electrical properties. The performance of PEC CO2 reduction can be evaluated based on its efficiency, selectivity, and stability, which are significantly influenced by the photocathode materials. As a result, researchers have applied various strategies to improve the performance of CZTS photocathodes, including band structure engineering and surface catalytic site engineering. This review provides an overview of advanced methods to enhance the PEC systems for CO2 reduction, focusing on CZTS.

19.
Small ; 19(50): e2303745, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37616514

RESUMEN

Rechargeable battery devices with high energy density are highly demanded by  our  modern society. The use of metal anodes is extremely attractive for future rechargeable battery devices. However, the notorious metal dendritic and instability of solid electrolyte interface issues pose a series of challenges for metal anodes. Recently, considering the indigestible dynamical behavior of metal anodes, photoelectrochemical engineering of light-assisted metal anodes have been rapidly developed since they efficiently utilize the integration and synergy of oriented crystal engineering and photocatalysis engineering, which provided a potential way to unlock the interface electrochemical mechanism and deposition reaction kinetics of metal anodes. This review starts with the fundamentals of photoelectrochemical engineering and follows with the state-of-art advance of photoelectrochemical engineering for light-assisted rechargeable metal batteries where photoelectrode materials, working principles, types, and practical applications are explained. The last section summarizes the major challenges and some invigorating perspectives for future research on light-assisted rechargeable metal batteries.

20.
Adv Mater ; 35(42): e2303936, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453141

RESUMEN

Thin-film solar cells are expected to play a significant role in the space industry, building integrated photovoltaic (BIPV), indoor applications, and tandem solar cells, where bifaciality and semitransparency are highly desired. Sb2 (S,Se)3 has emerged as a promising new photovoltaic (PV) material for its high absorption coefficient, tunable bandgap, and nontoxic and earth-abundant constituents. However, high-efficiency Sb2 (S,Se)3 solar cells exclusively employ monofacial architectures, leaving a considerable gap toward large-scale application in aforementioned fields. Here, a bifacial and semitransparent Sb2 (S,Se)3 solar cell and its extended application in tandem solar cells are reported. The transparent conductive oxides (TCOs) and the ultrathin inner n-i-p structure provide high long-wavelength transmittance. Despite the MnS/ITO Schottky junction, power conversion efficiencies (PCEs) of 7.41% and 6.36% are achieved with front and rear illumination, respectively, contributing to a great bifaciality of 0.86. Consequently, the reported device gains great enhancement in PV performance by exploiting albedo of surroundings and shows exceptional capability in absorbing tilt incident light. Moreover, an Sb2 (S,Se)3 /Si tandem solar cell with a PCE of 11.66% is achieved in preliminary trials. These exciting findings imply that bifacial and semitransparent Sb2 (S,Se)3 solar cells possess tremendous potential in practical applications based on their unique characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA