RESUMEN
Here, we report the clinical observations of two Chinese fraternal twins who presented with severe dehydration, poor feeding, and absence of stimuli responses within a few days of birth. Trio clinical exome sequencing of the family identified compound heterozygous intronic variants (c.1439+1G>C and c.875+1G>A ) in SCNN1A gene in these two patients. Sanger sequencing results showed that the c.1439+1G>C variant was inherited from the mother, and c.875+1G>A from the father, rarely reported in pseudohypoaldosteronism type 1 with sodium epithelial channel destruction (PHA1b) patients. Case 2 received timely symptomatic treatment and management after obtaining these results, which improved the clinical crisis. Our results suggest that the compound heterozygous splicing variants in SCNN1A were responsible for PHA1b in these Chinese fraternal twins. This finding extends the knowledge of the variant spectrum in PHA1b patients and highlights the application of exome sequencing in critically ill newborns. Finally, we discuss supportive case management, particularly in maintaining blood potassium concentration.
Asunto(s)
Seudohipoaldosteronismo , Humanos , Recién Nacido , Pueblos del Este de Asia , Mutación , Seudohipoaldosteronismo/genética , Gemelos Dicigóticos/genéticaRESUMEN
SUMMARY Here, we report the clinical observations of two Chinese fraternal twins who presented with severe dehydration, poor feeding, and absence of stimuli responses within a few days of birth. Trio clinical exome sequencing of the family identified compound heterozygous intronic variants (c.1439+1G>C and c.875+1G>A) in SCNN1A gene in these two patients. Sanger sequencing results showed that the c.1439+1G>C variant was inherited from the mother, and c.875+1G>A from the father, rarely reported in pseudohypoaldosteronism type 1 with sodium epithelial channel destruction (PHA1b) patients. Case 2 received timely symptomatic treatment and management after obtaining these results, which improved the clinical crisis. Our results suggest that the compound heterozygous splicing variants in SCNN1A were responsible for PHA1b in these Chinese fraternal twins. This finding extends the knowledge of the variant spectrum in PHA1b patients and highlights the application of exome sequencing in critically ill newborns. Finally, we discuss supportive case management, particularly in maintaining blood potassium concentration.