Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39272249

RESUMEN

The method proposed in this paper provides theoretical and practical support for the intelligent recognition and management of beef cattle. Accurate identification and tracking of beef cattle behaviors are essential components of beef cattle production management. Traditional beef cattle identification and tracking methods are time-consuming and labor-intensive, which hinders precise cattle farming. This paper utilizes deep learning algorithms to achieve the identification and tracking of multi-object behaviors in beef cattle, as follows: (1) The beef cattle behavior detection module is based on the YOLOv8n algorithm. Initially, a dynamic snake convolution module is introduced to enhance the ability to extract key features of beef cattle behaviors and expand the model's receptive field. Subsequently, the BiFormer attention mechanism is incorporated to integrate high-level and low-level feature information, dynamically and sparsely learning the behavioral features of beef cattle. The improved YOLOv8n_BiF_DSC algorithm achieves an identification accuracy of 93.6% for nine behaviors, including standing, lying, mounting, fighting, licking, eating, drinking, working, and searching, with average 50 and 50:95 precisions of 96.5% and 71.5%, showing an improvement of 5.3%, 5.2%, and 7.1% over the original YOLOv8n. (2) The beef cattle multi-object tracking module is based on the Deep SORT algorithm. Initially, the detector is replaced with YOLOv8n_BiF_DSC to enhance detection accuracy. Subsequently, the re-identification network model is switched to ResNet18 to enhance the tracking algorithm's capability to gather appearance information. Finally, the trajectory generation and matching process of the Deep SORT algorithm is optimized with secondary IOU matching to reduce ID mismatching errors during tracking. Experimentation with five different complexity levels of test video sequences shows improvements in IDF1, IDS, MOTA, and MOTP, among other metrics, with IDS reduced by 65.8% and MOTA increased by 2%. These enhancements address issues of tracking omission and misidentification in sparse and long-range dense environments, thereby facilitating better tracking of group-raised beef cattle and laying a foundation for intelligent detection and tracking in beef cattle farming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA