Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; PP2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288056

RESUMEN

The high tracking control precision and fast finite-time convergence for nonlinear systems is a significant challenge due to complex nonlinearity and unknown disturbances. To address this challenge, a dynamic surface intelligent robust control strategy with fixed-time sliding-mode observer (DSIRC-SMO) is proposed to improve the tracking control performance in a finite time. First, adaptive fuzzy neural network based on a predictor (P-AFNN) is designed to imitate the complex nonlinearity. In particular, the weight adaptive law is formulated by utilizing the prediction error information, which improves the accuracy of approximating the nonlinear system. Second, the fixed-time sliding-mode observer (SMO) is integrated into the dynamic surface control technique to deal with unknown disturbances and modeling errors in a fixed time. This integration allows for timely updates the dynamic surface using observation information, thereby enhancing the system's anti-interference capability. Then, the fixed-time convergence of SMO is proven. Third, the proposed DSIRC-SMO can be effectively implemented and the finite-time convergence of DSIRC-SMO is proven in detail based on the fixed-time convergence of SMO. Finally, numerical simulation and actual wastewater treatment processes simulation are conducted to validate the effectiveness of DSIRC-SMO.

2.
IEEE Trans Cybern ; PP2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159030

RESUMEN

The wastewater treatment process (WWTP) is characterized by unknown nonlinearity and external disturbances, which complicates the tracking control of dissolved oxygen concentration (DOC) within operational constraints. To address this issue, a data-driven tube-based robust predictive control (DTRPC) strategy is proposed to achieve stable tracking control of DOC and satisfy the system constraints. First, a tube-based robust predictive control (TRPC) strategy is designed to deal with system constraints and external disturbances. Specifically, a nominal controller is designed to ensure that the nominal output accurately tracks the set-point under tightened constraints, while an auxiliary feedback controller is designed to suppress disturbances and restore the nominal performance of the disturbed WWTP. Second, two fuzzy neural network identifiers are employed to provide accurate predictive outputs for the control process, overcoming the challenges of modeling the WWTP with strong nonlinearity and unknown dynamics. Third, the generalized multiplier method is utilized to solve the constrained optimization problem to obtain the nominal control law, and the gradient descent algorithm is used to obtain the auxiliary control law. The implementation of this composite controller ensures the satisfaction of the system constraints and the effective suppression of disturbances. Finally, the feasibility and stability of the proposed DTRPC strategy are guaranteed through rigorous theoretical analysis, and its effectiveness is demonstrated through the simulations on the benchmark simulation model No.1.

3.
IEEE Trans Cybern ; PP2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923487

RESUMEN

External disturbances and packet dropouts will lead to poor control performance for the wastewater treatment process (WWTP). To address this issue, a robust model-free adaptive predictive control (RMFAPC) strategy with a packet dropout compensation mechanism (PDCM) is proposed for WWTP. First, a dynamic linearization approach (DLA), relying only on perturbed process data, is employed to approximate the system dynamics. Second, a predictive control strategy is introduced to avoid a short-sighted control decision, and an extended state observer (ESO) is used to attenuate the disturbance effectively. Furthermore, a PDCM strategy is designed to handle the packet dropout problem, and the stability of RMFAPC is rigorously analyzed. Finally, the correctness and effectiveness of RMFAPC are verified through extensive simulations. The simulation results indicate that RMFAPC can significantly reduce IAE by 0.0223 and 0.1976 in two scenarios, regardless of whether the expected value remains constant or varies. This comparison to MFAPC demonstrates the superior robustness of RMFAPC against disturbances. The ablation experiment on PDCM further confirms its capability in handling the packet dropout problem.

4.
IEEE Trans Cybern ; PP2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758614

RESUMEN

The problem of sampled-data H∞ dynamic output-feedback control for networked control systems with successive packet losses (SPLs) and stochastic sampling is investigated in this article. The aim of using sampled-data control techniques is to alleviate network congestion. SPLs that occur in the sensor-to-controller (S-C) and controller-to-actuator (C-A) channels are modeled using a packet loss model. Additionally, it is assumed that stochastic sampling follows a Bernoulli distribution. A model is established to capture the stochastic characteristics of both the SPL model and stochastic sampling. This model is crucial as it allows us to determine the probability distribution of the sampling interval between successive update instants, which is essential for stability analysis. An exponential mean-square stability condition for the constructed equivalent discrete-time stochastic system, which also guarantees the prescribed H∞ performance, is established by incorporating probability theory. The desired controller is designed using a step-by-step synthesis approach, which may offer lower design conservatism compared to some existing methods. Finally, our designed approach using a networked F-404 engine system model is validated and its merits relative to existing results are discussed. The proposed method is finally validated by employing a networked model of the F-404 engine system. Furthermore, the advantages of our method are presented in comparison to previous results.

5.
IEEE Trans Cybern ; 53(12): 7712-7722, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36129866

RESUMEN

The multiobjective optimal control method optimizes the performance indexes of nonlinear systems to obtain setpoints, and designs a controller to track the setpoints. However, the stepwise optimal control method that independently analyzes the optimization process may obtain unfeasible and difficult to track setpoints, which will reduce the operation and control performance of the systems. To solve this problem, a multiobjective integrated optimal control (MIOC) strategy is proposed for nonlinear systems in this article. The main contributions of MIOC are threefold. First, in the framework of multiobjective model predictive control, an integrated control structure with a comprehensive cost function and a collaborative optimization algorithm is designed to achieve the coordinate optimal control. Second, for the time inconformity of setpoints and control laws caused by the characteristic of tracking control, the different prediction horizons are designed for the comprehensive cost function. Then, the collaborative optimization algorithm is proposed for the comprehensive cost function to achieve the integrated solution of setpoints and control laws to enhance the operation and control performance of nonlinear systems. Third, the stability and control performance analysis of MIOC is provided. Finally, the proposed MIOC method is applied for a nonlinear system to demonstrate its effectiveness.

6.
IEEE Trans Cybern ; 53(11): 7126-7135, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35976832

RESUMEN

In this article, the consensus problem of multiagent systems (MASs) affected by input and communication delays is investigated. A predictor-based state feedback protocol is used to reach the consensus of linear MASs by delay compensation. In order to analyze the maximum delay under the predictor-based protocol, the overall MASs are equivalent to the feedback interconnection system, including a linear time-invariant system and a time-delay operator, in view of the characteristic of the Laplacian matrix. Then, the maximum delay corresponding to the predictor-based protocol is evaluated by using the small gain theorem (SGT). Finally, two numerical examples are given to verify the effectiveness of the obtained consensus condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA