Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 9: 773635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900965

RESUMEN

The fabrication of tissue-engineered vascular grafts to replace damaged vessels is a promising therapy for cardiovascular diseases. Endothelial remodeling in the lumen of TEVGs is critical for successful revascularization. However, the construction of well-functioning TEVGs remains a fundamental challenge. Herein, chiral hybrid scaffolds were prepared by electrospinning using D/L-phenylalanine based gelators [D(L)PHEG] and poly-ε-caprolactone (PCL). The chirality of scaffolds significantly affected the endothelial remodeling progress of TEVGs. Compared with L-phenylalanine based gelators/poly-ε-caprolactone (L/PCL) and PCL, D-phenylalanine based gelators/poly-ε-caprolactone (D/PCL) scaffolds enhanced cell adhesion, and proliferation and upregulated the expression of fibronectin-1, and vinculin. These results suggests that chiral hybrid scaffolds can promote endothelial remodeling of TEVGs by upregulating adhesion-associated protein levels. This study offers an innovative strategy for endothelial remodeling of TEVGs by fabricating chiral hybrid scaffolds, and provides new insight for the treatment of cardiovascular diseases.

2.
Bioact Mater ; 6(7): 2173-2186, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33511315

RESUMEN

Articular cartilage injury is a common disease in the field of orthopedics. Because cartilage has poor self-repairing ability, medical intervention is needed. Using melt electro-writing (MEW) technology, tissue engineering scaffolds with high porosity and high precision can be prepared. However, ordinary materials, especially natural polymer materials, are difficult to print. In this study, gelatin was mixed with poly (lactic-co-glycolic acid) to prepare high-concentration and high-viscosity printer ink, which had good printability and formability. A composite scaffold with full-layer TGF-ß1 loading mixed with hydroxyapatite was prepared, and the scaffold was implanted at the cartilage injury site; microfracture surgery was conducted to induce the mesenchyme in the bone marrow. Quality stem cells thereby promoted the repair of damaged cartilage. In summary, this study developed a novel printing method, explored the molding conditions based on MEW printing ink, and constructed a bioactive cartilage repair scaffold. The scaffold can use autologous bone marrow mesenchymal stem cells and induce their differentiation to promote cartilage repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA