Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 51(3): 1495-500, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22256904

RESUMEN

New dimensional NiCo alloy icosahedral nanocrystals with controllable size have been first reported and synthesized through an Ostwald ripening process in a template-absent solvothermal reaction system. The proposed synthesis is corroborated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The as-obtained NiCo icosahedral nanocrystals exhibit the size- and component-dependent magnetic behaviors. The coercivity (H(c)) depends on both the magnetocrystalline and structure anisotropy, and the saturation magnetizations (M(s)) decided by the content of Co. H(c) decreases from 189.02 to 147.95 Oe with the increase of the icosahedral NCs size from 200 to 850 nm. Especially, the H(c) of the icosahedral NCs at 157.38 Oe is higher than that of nanospheres at 104.02 Oe. In addition, M(s) and H(c) increased with the increasing Co content. It can be an ideal building block for applications in magnetic media, sensors, and other devices.

2.
Chemphyschem ; 12(18): 3573-7, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21990147

RESUMEN

Newly designed magnetic FeNi-Pt match-like heterostructured nanorods were synthesized by means of induced growth of FeNi nanorods on Pt nanotips. The proposed synthesis mechanism is corroborated by SEM, TEM, XRD and XPS. The magnetic behavior shows that the magnetic saturation and coercivity are strongly dependent on both the shape and the alloy composition. The saturation magnetizations (Ms) and the coercivity (Hc) of nanorods synthesized are larger than those of nanoparticles because of the relatively large anisotropy of nanorods. Maximum saturation magnetization is obtained for Fe(82) Ni(15) -Pt(3) at 226.6 emu g(-1), whereas maximum coercivity is obtained for Fe(20)Ni(77)-Pt(3) at 136.8 Oe. Shape-dependent reactivity toward the reduction of chlorinated solvents was observed for the FeNi-Pt heterostructured nanomaterials. In particular, the Fe(82)Ni(15)-Pt(3) nanorods are highly reactive in the dechlorination process of 1,1,2,2-tetrachloroethane.

3.
Inorg Chem ; 50(19): 9393-9, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21902182

RESUMEN

Newly designed magnetic-alloy/noble-metal FeCo/Pt nanorods have been first reported and fabricated through a length-controllable catalyzing-synthesis process in which the growth of FeCo nanorods was induced on Pt nanotips. The length of FeCo/Pt nanorods depends on the number of platinum nanotips. The proposed synthesis mechanism was corroborated by scanning electron microscopy, transition electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. With the decrease of Fe content in Fe(x)Co(96-x)/Pt(4) nanoalloys from 77 to 15, the morphology changes from nanorods with different lengths to nanoparticles. The analysis of the magnetic hysteresis loops indicated that the magnetic saturation and coercivity were strongly dependent on the length of the nanorods in which maximum saturation magnetization and minimum coercivity were obtained for Fe(77)Co(19)/Pt(4) nanorods with the length of ∼2.5 µm. In particular, FeCo/Pt exhibited length-dependent reactivity towards 1,1,2,2-tetrachloroethane, and Fe(77)Co(19)/Pt(4) nanorods with the length of ∼2.5 µm yielded the greatest dechlorination rate. Moreover, Pt can enhance the dechlorination of 1,1,2,2-tetrachloroethane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA