Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Global Health Journal ; (4): 70-77, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1036164

RESUMEN

Nanotechnology has extensive application as nanomedicine in the medical field.Some nanoparticles have pos-sible applications in novel diagnostic instruments,imagery and methodologies,targeted medicinal products,pharmaceutical products,biomedical implants,and tissue engineering.Today treatments of high toxicity can be administered with improved safety using nanotechnology,such as chemotherapeutic cancer drugs.Further,wear-able gadgets can detect crucial changes in vital signs,cancer cell conditions,and infections that are genuinely happening in the body.We anticipate these technologies to provide doctors with considerably much better direct access to critical data on the reasons for changes in the signs of life or illness because of the technological presence at the source of the problem.Biomedicine can be utilised for therapies with predictive analytics and artificial intelligence.For carrying out this study,relevant papers on Nanotechnology in the medical field from Scopus,Google scholar,ResearchGate,and other research platforms are identified and studied.The study discusses dif-ferent types of Nanoparticles used in the medical field.This paper discusses nanotechnology applications in the medical field.The class,features,and characteristics of Nanotechnology for medicine are also briefed.Scientists,governments,civil society organisations,and the general public will need to collaborate across sectors to assess the significance of nanotechnology and guide its advancement in various fields.The current research includes sev-eral possible Nanotechnology uses in the medical field.As a result,the study provides a brief and well-organised report on nanotechnology that should be valuable to researchers,engineers,and scientists for future research projects.

2.
J Oral Biol Craniofac Res ; 12(3): 388-395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440433

RESUMEN

Every industry need helps to modify its working style quickly with the improvement of existing technology. New developing technologies improve production speed, reduce industrial process costs, etc. Technical specialists carry out continuous research and development to increase efficiency. A significant advance in 4D printing over 3D Printing is its capacity to alter shape over time because external elements such as pressure, air, heat, water, etc., use controlled impact. 4D Printing has one "D" instead of 3D Printing, and the fourth aspect is time. Therefore, its capacity to alter shape over time is a significant advancement of 4D printing over 3D printing technologies. It is evident that 4D printing will be of tremendous value to manufacturers regarding features and advances in dentistry. Its applications cover medical modelling, surgical guides manufacture, prosthodontics, dentistry, orthodontics, implantology, and dentistry instruments. This paper is brief about 4D printing and its printing of smart materials through 4D printing. Process workflow and Bio-Oriented 4D printable smart materials for dentistry are presented diagrammatically. Further, the paper identifies and discusses the significant potential of 4D printing for dentistry. 4D printing is an innovative technology that uses the inputs from smart materials, and the 3D printed item becomes another structure via the impact of external energy sources such as temperature, light, or other environmental stimuli. The objective is to integrate technology and design to create self-assembly and programmable material technologies that better design, production, and performance.

3.
Global Health Journal ; (4): 217-226, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1036152

RESUMEN

There is a growing demand for customised,biocompatible,and sterilisable components in the medical busi-ness.3D Printing is a disruptive technology for healthcare and provides significant research and development avenues.Simple 3D printing service gives patients low-cost individualised prostheses,implants,and gadgets,en-abling surgeons to operate more effectively with customised equipment and models;and assisting medical device manufacturers in developing new and faster goods.3D printed tissue pieces can overcome various challenges and may eventually allow medication companies to streamline research and development.In the long run,it may also assist in lowering prices and making medicines more accessible and effective for everybody.There is a growing corpus of research on the advantages of employing 3D printed anatomic models in teaching and training.The capacity to 3D printing individual anatomical diseases for practical learning is one of the funda-mental contrasts between utilising 3D and regular anatomical models.3D printing is very appealing for producing patient-specific implants.This literature review-based paper explores the role of 3D printing and 3D bioprinting in healthcare.It briefs the need and progressive steps for implementing 3D printing in healthcare and presented various facilities and enablers of 3D printing for the healthcare sector.Finally,this paper identifies and discusses the significant applications of 3D printing for healthcare research and development.3D printing services can be deployed to easily construct complex geometries in plastic or metal with good precision.This results in improved prototypes,lower costs,and lower part processing times.They can now physically create with natural materials,previously unattainable with prior technologies.Every hospital should have 3D printers in the future,allowing new organs/parts to be developed in-house.

4.
Sens Int ; 2: 100118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34766061

RESUMEN

The global oral healthcare sector has now woken to implement Dentistry 4.0. The implementation of this revolution is feasible with extensive digital and advanced technologies applications and the adoption of new sets of processes in dentistry & its support areas. COVID-19 has bought new challenges to dental professionals and patients towards their customised requirements, regular dental health checkups, fast-paced and safe procedures. People are not visiting the dentist even for mild cases as they fear COVID-19 infection. We see that this set of technologies will help improve health education and treatment process and materials and minimise the infection. During the COVID-19 pandemic, there is a need to understand the possible impact of Dentistry 4.0 for education and innovative care. This paper discusses the significant benefits of Dentistry 4.0 technologies for the smart education platform and dentistry treatment. Finally, this article identifies twenty significant enhancements in dental education and effective care platforms during the COVID-19 pandemic by employing Dentistry 4.0 technologies. Thus, proper implementation of these technologies will improve the process efficiency in healthcare during the COVID-19 pandemic. Dentistry 4.0 technologies drive innovations to improve the quality of internet-connected healthcare devices. It creates automation and exchanges data to make a smart health care system. Therefore, helps better healthcare services, planning, monitoring, teaching, learning, treatment, and innovation capability. These technologies moved to smart transportation systems in the hospital during the COVID-19 Pandemic. Modern manufacturing technologies create digital transformation in manufacturing, optimises the operational processes and enhances productivity.

5.
Sens Int ; 2: 100117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34806053

RESUMEN

Regular hospital visits can be expensive, particularly in rural areas, due to travel costs. In the era of the Covid-19 Pandemic, where physical interaction becomes risky, people prefer telemedicine. Fortunately, medical visits can be reduced when telemedicine services are used through video conferencing or other virtual technologies. Thus, telemedicine saves both the patient's and the health care provider time and the cost of the treatment. Furthermore, due to its fast and advantageous characteristics, it can streamline the workflow of hospitals and clinics. This disruptive technology would make it easier to monitor discharged patients and manage their recovery. As a result, it is sufficient to state that telemedicine can create a win-win situation. This paper aims to explore the significant capabilities, features with treatment workflow, and barriers to the adoption of telemedicine in Healthcare. The paper identifies seventeen significant applications of telemedicine in Healthcare. Telemedicine is described as a medical practitioner to diagnose and treat patients in a remote area. Using health apps for scheduled follow-up visits makes doctors and patients more effective and improves the probability of follow-up, reducing missing appointments and optimising patient outcomes. Patients should have an accurate medical history and show the doctor any prominent rashes, bruises, or other signs that need attention through the excellent quality audio-video system. Further, practitioners need file management and a payment gateway system. Telemedicine technologies allow patients and doctors both to review the treatment process. However, this technology supplements physical consultation and is in no way a substitute for a physical consultation. Today this technology is a safe choice for patients who cannot go to the doctor or sit at home, especially during a pandemic.

6.
Indian J Radiol Imaging ; 31(1): 10-17, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34316106

RESUMEN

Three-dimensional (3D) printing technologies are part of additive manufacturing processes and are used to manufacture a 3D physical model from a digital computer-aided design model as per the required shape and size. These technologies are now used for advanced radiology applications by providing all information through 3D physical model. It provides innovation in radiology for clinical applications, treatment planning, procedural simulation, medical and patient education. Radiological advancements have been made in diagnosis and communication through medical digital imaging techniques like computed tomography, magnetic resonance imaging. These images are converted into Digital Imaging and Communications in Medicine in Standard Triangulate Language file format, easily printable in 3D printing technologies. This 3D model provides in-depth information about pathologic and anatomic states. It is useful to create new opportunities related to patient care. This article discusses the potential of 3D printing technology in radiology. The steps involved in 3D printing for radiology are discussed diagrammatically, and finally identified 12 significant applications of 3D printing technology for radiology with a brief description. A radiologist can incorporate this technology to fulfil different challenges such as training, planning, guidelines, and better communications.

7.
J Clin Exp Hepatol ; 10(4): 386-390, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377058

RESUMEN

Coronavirus disease 2019 (COVID-19) is the name of the disease supposedly manifested in December 2019 from Wuhan, from the virus named SARS-CoV-2. Now, this disease has spread to almost all other parts of the world. COVID-19 pandemic has various reasons for its dramatic worldwide increase. Here, we have studied coronavirus sustainability on various surfaces. Various disinfectants and their roles are discussed from the available literature. The infection capabilities of SARS-CoV-1 and SARS-CoV-2 for different materials and finally studies on infection decay for SARS-CoV-1 and SARS-CoV-2 are discussed.

8.
Diabetes Metab Syndr ; 14(4): 521-524, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32388333

RESUMEN

BACKGROUND AND AIM: The current global challenge of COVID-19 pandemic has surpassed the provincial, radical, conceptual, spiritual, social, and pedagogical boundaries. Internet of Things (IoT) enabled healthcare system is useful for proper monitoring of COVID-19 patients, by employing an interconnected network. This technology helps to increase patient satisfaction and reduces readmission rate in the hospital. METHODS: Searched the databases of Google Scholar, PubMed, SCOPUS and ResearchGate using the keywords "Internet of things" or "IoT" and "COVID-19". Further inputs are also taken from blogs and relevant reports. RESULTS: IoT implementation impacts on reducing healthcare cost and improve treatment outcome of the infected patient. Therefore, this present study based research is attempted to explore, discuss, and highlight the overall applications of the well-proven IoT philosophy by offering a perspective roadmap to tackle the COVID-19 pandemic. Finally, twelve significant applications of IoT are identified and discussed. It has ultimately forced the researchers, academicians, and scientists to propose some productive solutions to overcome or confront this pandemic. CONCLUSIONS: IoT is helpful for an infected patient of COVID-19 to identify symptoms and provides better treatment rapidly. It is useful for patient, physician, surgeon and hospital management system.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/prevención & control , Atención a la Salud/normas , Control de Infecciones/métodos , Internet de las Cosas/estadística & datos numéricos , Pandemias/prevención & control , Neumonía Viral/prevención & control , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Humanos , Neumonía Viral/diagnóstico , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
9.
Diabetes Metab Syndr ; 14(4): 661-664, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32438329

RESUMEN

BACKGROUND AND AIMS: During COVID-19 pandemic, researchers are using innovative technologies for fast-tracking the development to end this menace. Virtual Reality (VR) also offers an imperative role for fighting this pandemic, through audiovisual-based virtual communication. METHODS: A brief study on Virtual Reality and its applications for the COVID-19 pandemic is carried out by employing keywords as Virtual reality or VR and COVID-19 from the databases of SCOPUS, Google Scholar, PubMed, Web of science Academia and ResearchGate. RESULTS: VR is beneficial for remote sites for exploring telemedicine, planning, treatment, and controlling of the infections by providing proper awareness to the people regarding this disease. CONCLUSIONS: VR technology develops a platform to reduce the face to face interaction of doctors with the infected COVID-19 patients. Through live video streaming, it helps to improve surveillance systems on the ongoing situation.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/terapia , Telemedicina/tendencias , Realidad Virtual , COVID-19 , Infecciones por Coronavirus/prevención & control , Sistemas de Apoyo a Decisiones Clínicas , Encuestas de Atención de la Salud , Humanos , Pandemias/prevención & control , Educación del Paciente como Asunto , Neumonía Viral/prevención & control , Pautas de la Práctica en Medicina
10.
Diabetes Metab Syndr ; 14(4): 419-422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32344370

RESUMEN

BACKGROUND AND AIMS: COVID 19 (Coronavirus) pandemic has created surge demand for essential healthcare equipment, medicines along with the requirement for advance information technologies applications. Industry 4.0 is known as the fourth industrial revolution, which has the potential to fulfil customised requirement during COVID-19 crisis. This revolution has started with the applications of advance manufacturing and digital information technologies. METHODS: A detailed review of the literature is done on the technologies of Industry 4.0 and their applications in the COVID-19 pandemic, using appropriate search words on the databases of PubMed, SCOPUS, Google Scholar and Research Gate. RESULTS: We found several useful technologies of Industry 4.0 which help for proper control and management of COVID-19 pandemic and these have been discussed in this paper. The available technologies of Industry 4.0 could also help the detection and diagnosis of COVID-19 and other related problems and symptoms. CONCLUSIONS: Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients. We have discussed ten major technologies of Industry 4.0 which help to solve the problems of this virus. It is useful to provide day to day update of an infected patient, area-wise, age-wise and state-wise with proper surveillance systems. We also believe that the proper implementation of these technologies would help to enhance education and communication regarding public health. These Industry 4.0 technologies could provide a lot of innovative ideas and solution for fighting local and global medical emergencies.


Asunto(s)
Biotecnología/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Atención a la Salud/normas , Control de Infecciones/organización & administración , Tecnología de la Información/estadística & datos numéricos , Pandemias/prevención & control , Educación del Paciente como Asunto , Neumonía Viral/diagnóstico , Neumonía Viral/prevención & control , Betacoronavirus/patogenicidad , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/normas , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Humanos , Control de Infecciones/tendencias , Atención al Paciente , Neumonía Viral/transmisión , Neumonía Viral/virología , Salud Pública , SARS-CoV-2 , Telemedicina , Tratamiento Farmacológico de COVID-19
11.
J Clin Orthop Trauma ; 11(Suppl 1): S118-S124, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31992931

RESUMEN

PURPOSE: 3D printing technology provides an excellent capability to manufacture customised implants for patients. Now, its applications are also successful in bone tissue engineering. This paper tries to provide a review of the applications of 3D printing in bone tissue engineering. METHODS: Searching by keywords, from the Scopus database, to identify relevant latest research articles on 3D printing in bone tissue engineering, through "3D printing" "bone tissue engineering". This study makes a bibliometric analysis of the identified research articles and identified major applications and steps. RESULTS: 3D printing technology creates innovative development in bone tissue engineering. It involves the manufacturing of a scaffold with the combination of cells and materials. We identified a total number of 257 research articles through bibliometric analysis by searching through keywords "3D printing" "bone tissue engineering". This paper studies 3D printing technology and its significant contributions, benefits and steps used for bone tissue engineering. Result discusses the essential elements of bone tissue engineering and identifies its five significant advancements when 3D printing is used. Finally, ten useful applications of 3D printing in bone tissue engineering are identified and studied with a brief description. CONCLUSION: In orthopaedics, bone defects create a high impact on the quality of life of the patient. It leads to a higher demand for bone substitutes for replacement of bone defect. Bone tissue engineering can help to replace a critical defect bone. 3D printing is a useful technology for the fabrication of scaffolds critical in bone tissue engineering. There are different binders which can create bone scaffolds with requisite mechanical strength. These binders are used to create excellent osteoconductive, bioactive scaffolds. Computed tomography (CT) and Magnetic resonance imaging (MRI) help to provide images of specific defects of an individual patient, and these images can further be used for 3D printing the detective object. A bone defect caused by specific disease is sorted out by transplantation in clinical practice. Now a day bone tissue engineering opens a new option for this treatment of bone defects with the manufacturing of porous bone scaffold using 3D printing technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA