Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Res Food Sci ; 9: 100836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290651

RESUMEN

The resurgence of interest in amaranth and buckwheat as nutrient-rich and versatile grains has incited extensive research aimed at exploring their potential benefits for sustainable agriculture and human nutrition. Amaranth is renowned for its gluten-free nature and exceptional nutritional profile, offering high-quality proteins, fiber, minerals, and bioactive compounds. Similarly, buckwheat is recognized for its functional and nutraceutical properties, offering a plethora of health benefits attributed to its diverse array of biologically active constituents; flavonoids, phytosterols, and antioxidants. This comprehensive review comprehends the existing understanding of the composition, anti-nutritional factors, biological activity, and potential application of these grains, emphasizing their pivotal role in addressing global food insecurity. Developed functional foods using these grains are having enhanced physicochemical properties, mineral content, phenolic content and overall sensory acceptability. In addition, the consumption of developed functional food products proved their health benefits against various type of anomalies. Moreover, enrichment of both grains in the animal feeds also showing positive health benefits.

2.
Front Oral Health ; 5: 1449833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139446

RESUMEN

Objectives: The aim of this study is to evaluate the effect of different surface treatments on the shear bond strength (SBS) of clear aligner attachments bonded to Bis-acryl provisional crowns. Methods: 120 cylindrical bisacrylic composite material (ProTemp type) specimens were prepared and divided into six groups (n = 20) based on surface treatment, control: (no treatment); super coarse grit diamond bur, carbide bur, alumina-blasting, non-thermal plasma treatment, and Er:YAG laser treatment. The features of treated surfaces were examined using scanning electron microscopy (SEM). A flowable composite resin (Transbond XT; 3M Unitek) was bonded to the specimens forming the attachment. Half of specimens were subjected to thermal cycling (5,000 cycles). SBS was measured before and after thermal cycling. Each specimen was loaded at the attachment/resin interface at a speed of 0.5 mm/min until failure. The nature of the failure was analyzed using the composite remnants index (CRI). Two-way ANOVA and Tukey HSD were used for data analysis α = 0.5. For CRI scores analysis, Kruskal-Wallis test and Dunn's multiple comparison were used as post-hoc test. Results: SEM analysis showed that all surface treatments altered surface properties and increase surface bonding area. The specimens treated with plasma, Er:YAG laser, and alumina-blasting had higher SBS values before and after thermal cycling. In comparison to control plasma, Er:YAG laser, and alumina-blasting showed a significant increase in SBS (P < 0.001) while carbide and diamond bur groups showed no significant differences (P > 0.05). Thermal cycling significantly decreased the SBS of control, carbide bur, diamond bur, and Er:YAG laser while no significant effect of alumina-blasting and plasma group. Er:YAG laser and plasma groups significantly exhibited more dominance for scores 2 and score 3 and the absence of score 0. Conclusion: Alumina-blasting, Er:YAG laser, or non-thermal plasma surface treatments increased the shear bond strength between clear aligner attachments and resin-based restorations.

3.
Curr Res Food Sci ; 9: 100791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979544

RESUMEN

The utmost objective of every nation is to achieve zero hunger and ensure the health and well-being of its population. However, in impoverished nations, particularly in rural areas, such issues persist on a daily basis. Currently, there is a growing demand for fruit consumption due to their potential health benefits. Surprisingly, their most prevalent by-product is pomace, which is produced in millions of tonnes and is usually discarded as waste after processing or consumption. Even food produced with these kinds of raw resources can contribute to the objective of eradicating world hunger. Owing to these advantages, scientists have begun evaluating the nutritional content of various fruit pomace varieties as well as the chemical composition in different bioactive constituents, which have significant health benefits and can be used to formulate a variety of food products with notable nutraceutical and functional potential. So, the purpose of this review is to understand the existing familiarity of nutritional and phytochemical composition of selected fruit pomaces, those derived from pineapple, orange, grape, apple, and tomato. Furthermore, this article covers pre-clinical and clinical investigations conducted on the selected fruit pomace extracts and/or powder forms and its incorporation into food products and animal feed. Adding fruit pomaces reduces the glycemic index, increases the fibre content and total polyphenolic contents, and reduces the cooking loss, etc. In animal feeds, incorporating fruit pomaces improves the antioxidant enzyme activities, humoral immune system, and growth performance and reduces methane emission.

4.
BMC Oral Health ; 24(1): 826, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034419

RESUMEN

OBJECTIVE: Safe patient care can help reduce treatment costs, morbidity, and mortality. This study aimed to assess dentists' perceptions of patient safety culture and related factors in the Eastern region of Saudi Arabia. METHODS: This cross-sectional study used a sample of 271 dental professionals working in private and public dental hospitals and clinics in the Eastern region of Saudi Arabia. The Safety Attitude Questionnaire (SAQ), a validated tool consisting of 36 items on a 5-point Likert scale, was used to assess dentists' perceptions of patient safety culture. The score of SAQ ranges from 0 to 100 and a cut-off ≥ 75 is considered a positive attitude toward patient safety culture. RESULTS: There were 53.9% males and 46.1% females in the study with a mean age of 35.56 ± 6.87 years. Almost half of the participants (52%) attended a course on patient safety and 22.1% experienced medical error in the last month. The mean score of the SAQ of the sample was 65.14 ± 13.03 and the patient safety score was significantly related to the marital status (P = 0.041), attendance of patient safety course (P < 0.001), and experience of medical error (P = 0.008). The highest mean score (73.27 ± 20.11) was for the job satisfaction domain, followed by the safety climate domain (67.69 ± 16.68), and working conditions domain (66.51 ± 20.43). About one-quarter of the participants (22.5%) demonstrated positive attitudes toward patient safety culture. Multiple logistic regression analysis showed that dental professionals who attended a patient safety course were 4.64 times more likely to demonstrate positive attitudes toward patient safety than those who did not attend a course (P < 0.001). CONCLUSION: This study showed that patient safety culture was significantly related to the attendance of safety courses, marital status, and experiencing medical error. About one out of four dental professionals demonstrated a positive attitude towards patient safety culture which was significantly associated with the attendance of the safety course.


Asunto(s)
Actitud del Personal de Salud , Odontólogos , Seguridad del Paciente , Humanos , Arabia Saudita , Femenino , Masculino , Odontólogos/psicología , Estudios Transversales , Adulto , Encuestas y Cuestionarios , Estado Civil , Cultura Organizacional , Errores Médicos/psicología , Errores Médicos/estadística & datos numéricos
5.
Arch Toxicol ; 98(5): 1323-1367, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483584

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., ß-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno , Superóxidos , Ácido Peroxinitroso/farmacología , Antocianinas/metabolismo , Antocianinas/farmacología , Estrés Oxidativo , Óxido Nítrico , Superóxido Dismutasa/metabolismo , Enfermedad Crónica
6.
Sci Total Environ ; 922: 171142, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38387576

RESUMEN

Global imperatives have recently shown a paradigm shift in the prevailing resource utilization model from a linear approach to a circular bioeconomy. The primary goal of the circular bioeconomy model is to minimize waste by effective re-usage of organic waste and efficient nutrient recycling. In essence, circular bioeconomy integrates the fundamental concept of circular economy, which strives to offer sustainable goods and services by leveraging biological resources and processes. Notably, the circular bioeconomy differs from conventional waste recycling by prioritizing the safeguarding and restoration of production ecosystems, focusing on harnessing renewable biological resources and their associated waste streams to produce value-added products like food, animal feed, and bioenergy. Amidst these sustainability efforts, fruit seeds are getting considerable attention, which were previously overlooked and commonly discarded but were known to comprise diverse chemicals with significant industrial applications, not limited to cosmetics and pharmaceutical industries. While, polyphenols in these seeds offer extensive health benefits, the inadequate conversion of fruit waste into valuable products poses substantial environmental challenges and resource wastage. This review aims to comprehend the known information about the application of non-edible fruit seeds for synthesising metallic nanoparticles, carbon dots, biochar, biosorbent, and biodiesel. Further, this review sheds light on the potential use of these seeds as functional foods and feed ingredients; it also comprehends the safety aspects associated with their utilization. Overall, this review aims to provide a roadmap for harnessing the potential of non-edible fruit seeds by adhering to the principles of a sustainable circular bioeconomy.


Asunto(s)
Ecosistema , Frutas , Animales , Semillas , Reciclaje , Polifenoles , Biocombustibles
7.
J Med Entomol ; 61(2): 318-330, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38104252

RESUMEN

The current study was carried out in the seaward coastal beach environment of Al-Jubail City, Saudi Arabia, to analyze the rabbit carcass decomposition process, the succession pattern of associated ants, and their potential utility in forensic investigation. Experiments were conducted over a 4-season course (from autumn 2018 to summer 2019). A total of 9 species belonging to the 2 subfamilies, Myrmicinae and Formicinae, were recorded. The myrmicine species were Crematogaster aegyptiaca Mayr, 1862; Messor ebeninus Santschi, 1927; Messor foreli Santschi, 1923; and Monomorium abeillei Andre, 1881. The formicine species were Camponotus xerxes Forel, 1904; Cataglyphis albicans (Roger, 1859); Cataglyphis hologerseniCollingwood & Agosti, 1996; Cataglyphis viaticoides (André, 1881); and Nylanderia jaegerskioeldi (Mayr, 1904). M. abeillei was the only species recorded in all 4 seasons, while M. abeillei and C. albicans were the dominant species in summer and C. aegyptiaca and C. albicans in spring. Diversity was lowest in the autumn, with only 4 species recorded. The COI gene sequences of 5 species have been successfully deposited in the GenBank database for the first time. In total, 4 carcass decomposition stages were observed, with the longest duration in winter (13 days), the shortest in summer (11 days), and in between for both autumn and spring. Most ant species were present during both decay and dry stages, while M. abeillei, C. aegyptiaca, M. ebeninus, and C. albicans were observed in all decomposition stages. These data may indicate that ants on this coastal beach showed seasonal and geographical succession patterns that could be taken into consideration in forensic investigations.


Asunto(s)
Hormigas , Conejos , Animales , Arabia Saudita , Cadáver
8.
Biomed Pharmacother ; 167: 115600, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783152

RESUMEN

Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Femenino , Masculino , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Senoterapéuticos , Inmunosupresores , Sirolimus , Serina-Treonina Quinasas TOR
9.
Heliyon ; 9(10): e20997, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876475

RESUMEN

A straightforward approach for creating fast and novel potentiometric sensors that are modified with multi-walled nanotubes (MWCNTs) was described. The impact of the selective sensor's material was studied. The suggested sensors were successfully fabricated for instant and fast detection of the prohibited ß-adrenoreceptor blocking agent acebutolol hydrochloride (AC) in commercial products. Acebutolol-phosphomolybdate (AC-PM) carbon paste sensor was formed by mixing AC and phosphomolybdic acid and graphite powder in the presence of o-nitrophenyl octyl ether (o-NPOE) as a plasticizing agent. The functionalized AC-PM-MWCNTs and AC-PM-MWCNTs-Al2O3 nanocomposite sensors were prepared and all parameters affecting the sensors' potential responses have been investigated as well as the green synthesis of Al2O3NPs has been characterized using various microscopic and spectroscopic techniques. AC-PM-MWCNTs and AC-PM-MWCNTs-Al2O3 nanocomposite sensors demonstrated linearity of 1.0 × 10-7-1.0 × 10-2 and 1.0 × 10-8-1.0 × 10-2 mol L-1, respectively with regression equations -53.571x + 423.24 (r = 0.999) and -57.107x + 518.54 (r = 0.999). It also revealed excellent selectivity and sensitivity for the determination and quantification of AC. The developed potentiometric system was suitable for the determination of AC in bulk powder and commercial products.

10.
Sci Rep ; 13(1): 15075, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699974

RESUMEN

Human Papillomavirus (HPV) is the most common cause of sexually transmitted diseases and causes a wide range of pathologies including cervical carcinoma. Integration of the HR-HPV DNA into the host genome plays a crucial role in cervical carcinoma. An alteration of the pRb pathways by the E7 proteins is one of the mechanisms that's account for the transforming capacity of high-risk papillomavirus. For the proper understanding of the underline mechanism of the progression of the disease, the present study investigate the correlation of concentration of host pRb protein, viral E7 oncoprotein and viral load in early and advanced stages of cervical carcinoma. It was found that the viral load in early stages (stage I and II) was less (log10 transformed mean value 2.6 and 3.0) compared to advanced stages (stage III and IV) (Log10 transformed value 5.0 and 5.8) having high expression of HPV E7 onco-protein and reduced level of pRb protein, signifying the role of viral load and expression level of E7 oncoprotein in the progression of cervical cancer.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Carga Viral , Proteínas E7 de Papillomavirus/genética
11.
Arch Toxicol ; 97(10): 2499-2574, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597078

RESUMEN

A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno , Enfermedad Crónica
12.
Biomed Pharmacother ; 165: 115022, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37336149

RESUMEN

Cells produce reactive oxygen species (ROS) as a metabolic by-product. ROS molecules trigger oxidative stress as a feedback response that significantly initiates biological processes such as autophagy, apoptosis, and necrosis. Furthermore, extensive research has revealed that hydrogen peroxide (H2O2) is an important ROS entity and plays a crucial role in several physiological processes, including cell differentiation, cell signalling, and apoptosis. However, excessive production of H2O2 has been shown to disrupt biomolecules and cell organelles, leading to an inflammatory response and contributing to the development of health complications such as collagen deposition, aging, liver fibrosis, sepsis, ulcerative colitis, etc. Extracts of different plant species, phytochemicals, and Lactobacillus sp (probiotic) have been reported for their anti-oxidant potential. In this view, the researchers have gained significant interest in exploring the potential plants spp., their phytochemicals, and the potential of Lactobacillus sp. strains that exhibit anti-oxidant properties and health benefits. Thus, the current review focuses on comprehending the information related to the formation of H2O2, the factors influencing it, and their pathophysiology imposed on human health. Moreover, this review also discussed the anti-oxidant potential and role of different extract of plants, Lactobacillus sp. and their fermented products in curbing H2O2­induced oxidative stress in both in-vitro and in-vivo models via boosting the anti-oxidative activity, inhibiting of important enzyme release and downregulation of cytochrome c, cleaved caspases-3, - 8, and - 9 expression. In particular, this knowledge will assist R&D sections in biopharmaceutical and food industries in developing herbal medicine and probiotics-based or derived food products that can effectively alleviate oxidative stress issues induced by H2O2 generation.


Asunto(s)
Antioxidantes , Probióticos , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Apoptosis , Plantas/metabolismo , Probióticos/farmacología
13.
Heliyon ; 9(5): e15793, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37180929

RESUMEN

The extraordinary features of cerium oxide (CeO2) and zinc oxide (ZnO) nanostructures have encouraged substantial attention to those nanocomposites as probable electroactive complexes for sensing and biosensing purposes. In this study, an advanced novel factionalized CeO2/ZnO nanocomposite-aluminum wire membrane sensor was designed to assess pethidine hydrochloride (PTD) in commercial injection samples. Pethidine-reineckate (PTD-RK) was formed by mixing pethidine hydrochloride and ammonium reineckate (ARK) in the presence of polymeric matrix (polyvinyl chloride) and o-nitrophenyl octyl ether as a fluidizing agent. The functionalized nanocomposite sensor displayed a fast dynamic response and wide linearity for the detection of PTD. It also revealed excellent selectivity and sensitivity, high accuracy, and precision for the determination and quantification of PTD when compared with the unmodified sensor PTD-RK. The guidelines of analytical methodology requirements were obeyed to improve the suitability and validity of the suggested potentiometric system according to several criteria. The developed potentiometric system was suitable for the determination of PTD in bulk powder and commercial products.

14.
J Inorg Biochem ; 245: 112244, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178556

RESUMEN

The antioxidant properties of flavonoids are mediated by their functional hydroxyl groups, which are capable of both chelating redox active metals such as iron, copper and scavenging free radicals. In this paper, the antioxidant vs. prooxidant and DNA protecting properties of baicalein and Cu(II)-baicalein complexes were studied under the conditions of the Copper-Fenton reaction and of the Copper-Ascorbate system. From the relevant EPR spectra, the interaction of baicalein with Cu(II) ions was confirmed, while UV-vis spectroscopy demonstrated a greater stability over time of Cu(II)-baicalein complexes in DMSO than in methanol and PBS and Phosphate buffers. An ABTS study confirmed a moderate ROS scavenging efficiency, at around 37%, for both free baicalein and Cu(II)-baicalein complexes (in the ratios 1:1 and 1:2). The results from absorption titrations are in agreement with those from viscometric studies and confirmed that the binding mode between DNA and both free baicalein and Cu-baicalein complexes, involves hydrogen bonds and van der Waals interactions. The DNA protective effect of baicalein has been investigated by means of gel electrophoresis under the conditions of the Cu-catalyzed Fenton reaction and of the Cu-Ascorbate system. In both cases, it was found that, at sufficiently high concentrations, baicalein offers some protection to cells from DNA damage caused by ROS (singlet oxygen, hydroxyl radicals and superoxide radical anions). Accordingly, baicalein may be useful as a therapeutic agent in diseases with a disturbed metabolism of redox metals such as copper, for example Alzheimer's disease, Wilson's disease and various cancers. While therapeutically sufficient concentrations of baicalein may protect neuronal cells from Cu-Fenton-induced DNA damage in regard to neurological conditions, conversely, in the case of cancers, low concentrations of baicalein do not inhibit the pro-oxidant effect of copper ions and ascorbate, which can, in turn, deliver an effective damage to DNA in tumour cells.


Asunto(s)
Antioxidantes , Cobre , Antioxidantes/química , Cobre/química , Flavonoides , Especies Reactivas de Oxígeno/metabolismo , Ácido Ascórbico , Oxidación-Reducción , Metales , Radical Hidroxilo/metabolismo , ADN/metabolismo , Daño del ADN
15.
Toxicology ; 492: 153549, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209941

RESUMEN

Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.


Asunto(s)
Aflatoxinas , Contaminación de Alimentos , Humanos , Contaminación de Alimentos/prevención & control , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Aflatoxinas/metabolismo , Dieta , Medición de Riesgo , Alimentos
16.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985439

RESUMEN

Shigellosis is a serious foodborne diarrheal disease caused by the Shigella species. It is a critical global health issue. In developing countries, shigellosis causes most of the mortality in children below 5 years of age. Globally, around 165 million cases of diarrhea caused by Shigella are reported, which accounts for almost 1 million deaths, in which the majority are recorded in Third World nations. In this study, silver nanoparticles were synthesized using Mangifera indica kernel (MK-AgNPs) seed extracts. The biosynthesized M. indica silver nanoparticles (MK-AgNPs) were characterized using an array of spectroscopic and microscopic tools, such as UV-Vis, scanning electron microscopy, particle size analyzer, Fourier transform infrared spectroscopy, and X-ray diffractometer. The nanoparticles were spherical in shape and the average size was found to be 42.7 nm. The MK-AgNPs exhibited remarkable antibacterial activity against antibiotic-resistant clinical Shigella sp. The minimum inhibitory concentration (MIC) value of the MK-AgNPs was found to be 20 µg/mL against the multi-drug-resistant strain Shigella flexneri. The results clearly demonstrate that MK-AgNPs prepared using M. indica kernel seed extract exhibited significant bactericidal action against pathogenic Shigella species. The biosynthesized nanoparticles from mango kernel could possibly prove therapeutically useful and effective in combating the threat of shigellosis after careful investigation of its toxicity and in vivo efficacy.


Asunto(s)
Disentería Bacilar , Mangifera , Nanopartículas del Metal , Shigella , Niño , Humanos , Mangifera/química , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Disentería Bacilar/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Semillas
17.
Eur J Dent ; 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577439

RESUMEN

OBJECTIVE: This study aimed to examine the correlation between the morphology of the maxilla and unilateral palatally impacted maxillary canine (PIMC) among the Saudi population in the Eastern Province of Saudi Arabia. MATERIALS AND METHODS: In this retrospective study, 36 patients' records [(17 PIMC, 8 male, 9 female, mean age 16.75 ± 2.12 years) (19 control; 9 male,10 female, mean age: 17.16 ± 2.12 years)] were included from a teaching dental hospital. On cone-beam computed tomographic images, measurements of maxillary arch length (MAL), palatal vault depth (PVD), intermolar width, sum of widths of 4 maxillary incisors, available arch space (AAS), palatal maxillary width (PMW) in the molar and premolar regions, nasal cavity width (NCW), maxillary arch shape (MAS) (arch length/intermolar width x 100), and palatal vault shape (PVS) (the PVD/intermolar width x100) were performed. Data were analyzed by SPSS-20.0. p-value less than or equal to 0.05 reflected statistical significance. RESULTS: This study's findings depicted that AAS (p = 0.012), PVD (p = 0.028), and PMW in the molar and premolar regions at the level of the alveolar crest (p = 0.002 and p = 0.034) and mid-root (p = 0.004 and p = 0.022) were significantly higher in the control compared to the PIMC group. PVS showed a significant difference between the PIMC and control groups (p = 0.037). However, regarding MAS, no significant difference was observed (p = 0.707). CONCLUSION: MAS was narrower in PIMC compared to the control group. The control group had a deeper palatal vault and greater AAS compared to the PIMC group. However, no significant difference was observed between groups regarding tooth size or NCW.

18.
Healthcare (Basel) ; 10(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36554094

RESUMEN

Background: Several observational studies have inconsistently demonstrated that vitamin D deficiency is a risk factor for coronavirus disease-19 (COVID-19) infection and severity. Discrepancies in results may partially be explained by the individuals' immune profiles, which are modulated, in varying degrees, by vitamin D status and sex hormones. Methods: In this study we evaluated the differences and associations of serum levels of 25(OH)D with 34 cytokines in 220 adults (82 controls (41 males; 41 females) and 138 SARS-CoV-2 patients (79 males and 59 females)) with and without COVID-19. Results: Serum 25(OH)D levels were significantly lower in the SARS-CoV-2 group than in the controls. Serum IP-10, MCP-1, CRP, IFNγ, IL-10, IL-13, IL-17α, IL-23, and IL-6 were significantly higher in COVID-19 patients compared to controls. Serum levels of VEGF, IFNγ, IL-13, and IL-5 were significantly higher in male patients than in females. 25(OH)D was significantly correlated with EFG (R = 0.39, p < 0.05) and IL-15 (R = 0.39, p < 0.05) in male patients, while it was inversely correlated with CRP (R = −0.51, p < 0.05) in female patients. Conclusions: Altered levels of cytokines, chemokines, and vitamin D were observed in SARS-CoV-2 adult patients. These expressions were sexually dimorphic and thus highlight the sex-specific nature of the active immune response following SARS-CoV-2 infection.

19.
Biomed Pharmacother ; 156: 113898, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36274463

RESUMEN

Medicinal plants have been exploited for therapeutic purposes since the dawn of civilization and have long been acknowledged essential to human health. The purpose of this research is to examine the scientific evidence for using the therapeutic herbal plants Thalictrum foliolosum DC. and Cordia dichotoma G. Forst. to treat hepatitis illness. The fundamental explanation for the therapeutic relevance of these plants is phytochemicals, which were evaluated qualitatively and quantitatively in three separate extracts with different solvent properties (methanol-polar, chloroform-non-polar, and aqueous-polar as one of the bases of traditional use). Flavonoids, phenols, tannins, saponins, and alkaloids were all evaluated for their presence in plant extracts, and it was observed that methanolic extract had the highest content of phytochemicals among different extracts whereas, the aqueous extract showed least amount of phytochemicals. Additionally, the antioxidant activity of these plants was also evaluated and methanolic extract was revealed with potential antioxidant activity, as also evidenced by the lowest half inhibitory concentration (IC50) values in the DPPH, ABTS, and high %inhibition in µM Fe equivalent of FRAP assays. Following that, the dominant phytochemicals were investigated using ultra-high performance liquid chromatography from the selected plants. Furthermore, default docking algorithms were used to appraise the dominant phytoconstituents for their in-silico investigation, in which rutin was found with the highest binding affinity (8.2 kcal/mol) and interaction with receptor which is further involved in causing jaundice. The receptor is infact an enzyme that is sphingomyelin phosphodiesterase Leptospira interrogans (PDB: 5EBB) which is holded back in its position by rutin and do not interact with Leptospira inferrogans spp which causes jaundice. Overall, the study suggested that these herbs have significant therapeutic properties, and their in-silico analysis strongly recommends further clinical investigations to get insight into the mechanisms of action in curing variety of diseases.


Asunto(s)
Cordia , Ictericia , Thalictrum , Humanos , Antioxidantes/farmacología , Antioxidantes/análisis , Simulación de Dinámica Molecular , Fitoquímicos/análisis , Extractos Vegetales/química , Flavonoides/farmacología , Flavonoides/análisis , Metanol , Rutina
20.
Chem Biol Interact ; 367: 110173, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152810

RESUMEN

In total, twenty elements appear to be essential for the correct functioning of the human body, half of which are metals and half are non-metals. Among those metals that are currently considered to be essential for normal biological functioning are four main group elements, sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca), and six d-block transition metal elements, manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn) and molybdenum (Mo). Cells have developed various metallo-regulatory mechanisms for maintaining a necessary homeostasis of metal-ions for diverse cellular processes, most importantly in the central nervous system. Since redox active transition metals (for example Fe and Cu) may participate in electron transfer reactions, their homeostasis must be carefully controlled. The catalytic behaviour of redox metals which have escaped control, e.g. via the Fenton reaction, results in the formation of reactive hydroxyl radicals, which may cause damage to DNA, proteins and membranes. Transition metals are integral parts of the active centers of numerous enzymes (e.g. Cu,Zn-SOD, Mn-SOD, Catalase) which catalyze chemical reactions at physiologically compatible rates. Either a deficiency, or an excess of essential metals may result in various disease states arising in an organism. Some typical ailments that are characterized by a disturbed homeostasis of redox active metals include neurological disorders (Alzheimer's, Parkinson's and Huntington's disorders), mental health problems, cardiovascular diseases, cancer, and diabetes. To comprehend more deeply the mechanisms by which essential metals, acting either alone or in combination, and/or through their interaction with non-essential metals (e.g. chromium) function in biological systems will require the application of a broader, more interdisciplinary approach than has mainly been used so far. It is clear that a stronger cooperation between bioinorganic chemists and biophysicists - who have already achieved great success in understanding the structure and role of metalloenzymes in living systems - with biologists, will access new avenues of research in the systems biology of metal ions. With this in mind, the present paper reviews selected chemical and biological aspects of metal ions and their possible interactions in living systems under normal and pathological conditions.


Asunto(s)
Manganeso , Metaloproteínas , Calcio/química , Catalasa , Cromo , Cobalto , Cobre , Humanos , Iones , Hierro , Magnesio , Molibdeno , Potasio , Sodio , Superóxido Dismutasa , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA