Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(21): 5819-5822, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910767

RESUMEN

A wide-range OFDR strain sensor was demonstrated based on femtosecond-laser-inscribed weak fiber Bragg grating (WFBG) array in standard SMF. A WFBG array consisting of 110 identical WFBGs was successfully fabricated along a 56 cm-long SMF. Compared with SMF, the cross-correlation coefficient of WFBG array was improved to 0.9 under the strain of 10,000 µÎµ. The position deviation under the strain of 10,000 µÎµ, i.e., 2.5 mm, could be accurately obtained and compensated simply by using peak finding algorithm. The maximum measurable strain of single- and multi-point strain sensing was up to 10,000 µÎµ without using any additional algorithms, where the sensing spatial resolution was 5 mm.

2.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177562

RESUMEN

A distributed optical fiber refractive index sensor based on etched Ge-doped SMF in optical frequency domain reflection (OFDR) was proposed and demonstrated. The etched Ge-doped SMF was obtained by only using wet-etching, i.e., hydrofluoric acid solution. The distributed refractive index sensing is achieved by measuring the spectral shift of the local RBS spectra using OFDR. The sensing length of 10 cm and the spatial resolution of 5.25 mm are achieved in the experiment. The refractive index sensing range is as wide as 1.33-1.44 refractive index units (RIU), where the average sensitivity was about 757 GHz/RIU. Moreover, the maximum sensitivity of 2396.9 GHZ/RIU is obtained between 1.43 and 1.44 RIU.

3.
Sensors (Basel) ; 22(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36560341

RESUMEN

A high-spatial-resolution OFDR distributed temperature sensor based on Au-SMF was experimentally demonstrated by using step-by-step and image wavelet denoising methods (IWDM). The measured temperature between 50 and 600 °C could be successfully demodulated by using SM-IWDM at a spatial resolution of 3.2 mm. The temperature sensitivity coefficient of the Au-SMF was 3.18 GHz/°C. The accuracy of the demodulated temperature was approximately 0.24 °C. Such a method has great potential to expand the temperature measurement range, which is very useful for high-temperature applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA