Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Res Rev ; 44(5): 2266-2290, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38618882

RESUMEN

Malaria is a life-threatening disease that affects tropical and subtropical regions worldwide. Various drugs were used to treat malaria, including artemisinin and derivatives, antibiotics (tetracycline, doxycycline), quinolines (chloroquine, amodiaquine), and folate antagonists (sulfadoxine and pyrimethamine). Since the malarial parasites developed drug resistance, there is a need to develop new chemical entities with high efficacy and low toxicity. In this context, 1,2,4,5-tetraoxanes emerged as an essential scaffold and have shown promising antimalarial activity. To improve activity and overcome resistance to various antimalarial drugs; 1,2,4,5-tetraoxanes were fused with various aryl/heteroaryl/alicyclic/spiro moieties (steroid-based 1,2,4,5-tetraoxanes, triazine-based 1,2,4,5-tetraoxanes, aminoquinoline-based 1,2,4,5-tetraoxanes, dispiro-based 1,2,4,5-tetraoxanes, piperidine-based 1,2,4,5-tetraoxanes and diaryl-based 1,2,4,5-tetraoxanes). The present review aims to focus on covering the relevant literature published during the past 30 years (1992-2022). We summarize the most significant in vitro, in vivo results and structure-activity relationship studies of 1,2,4,5-tetraoxane-based hybrids as antimalarial agents. The structural evolution of different hybrids can provide the framework for the future development of 1,2,4,5-tetraoxane-based hybrids to treat malaria.


Asunto(s)
Antimaláricos , Tetraoxanos , Antimaláricos/farmacología , Antimaláricos/química , Relación Estructura-Actividad , Humanos , Tetraoxanos/farmacología , Tetraoxanos/química , Animales , Malaria/tratamiento farmacológico , Peróxidos/química , Peróxidos/farmacología , Plasmodium falciparum/efectos de los fármacos
2.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375374

RESUMEN

Leishmaniasis is a neglected tropical disease, and there is an emerging need for the development of effective drugs to treat it. To identify novel compounds with antileishmanial properties, a novel series of functionalized spiro[indoline-3,2'-pyrrolidin]-2-one/spiro[indoline-3,3'-pyrrolizin]-2-one 23a-f, 24a-f, and 25a-g were prepared from natural-product-inspired pharmaceutically privileged bioactive sub-structures, i.e., isatins 20a-h, various substituted chalcones 21a-f, and 22a-c amino acids, via 1,3-dipolar cycloaddition reactions in MeOH at 80 °C using a microwave-assisted approach. Compared to traditional methods, microwave-assisted synthesis produces higher yields and better quality, and it takes less time. We report here the in vitro antileishmanial activity against Leishmania donovani and SAR studies. The analogues 24a, 24e, 24f, and 25d were found to be the most active compounds of the series and showed IC50 values of 2.43 µM, 0.96 µM, 1.62 µM, and 3.55 µM, respectively, compared to the standard reference drug Amphotericin B (IC50 = 0.060 µM). All compounds were assessed for Leishmania DNA topoisomerase type IB inhibition activity using the standard drug Camptothecin, and 24a, 24e, 24f, and 25d showed potential results. In order to further validate the experimental results and gain a deeper understanding of the binding manner of such compounds, molecular docking studies were also performed. The stereochemistry of the novel functionalized spirooxindole derivatives was confirmed by single-crystal X-ray crystallography studies.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Simulación del Acoplamiento Molecular , Microondas , Antiprotozoarios/química , Camptotecina/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA