Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSphere ; 4(2)2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894431

RESUMEN

DNA damage-induced Rad51 focus formation is the hallmark of homologous recombination-mediated DNA repair. Earlier, we reported that Rad51 physically interacts with Hsp90, and under the condition of Hsp90 inhibition, it undergoes proteasomal degradation. Here, we show that the dynamic interaction between Rad51 and Hsp90 is crucial for the DNA damage-induced nuclear function of Rad51. Guided by a bioinformatics study, we generated a single mutant of Rad51, which resides at the N-terminal domain, outside the ATPase core domain. The mutant with an E to L change at residue 108 (Rad51E108L) was predicted to bind more strongly with Hsp90 than the wild-type (Rad51WT). A coimmunoprecipitation study demonstrated that there exists a distinct difference between the in vivo associations of Rad51WT-Hsp90 and of Rad51E108L-Hsp90. We found that upon DNA damage, the association between Rad51WT and Hsp90 was significantly reduced compared to that in the undamaged condition. However, the mutant Rad51E108L remained tightly associated with Hsp90 even after DNA damage. Consequently, the recruitment of Rad51E108L to the double-stranded broken ends was reduced significantly. The E108L-rad51 strain manifested severe sensitivity toward methyl methanesulfonate (MMS) and a complete loss of gene conversion efficiency, a phenotype similar to that of the Δrad51 strain. Previously, some of the N-terminal domain mutants of Rad51 were identified in a screen for a Rad51 interaction-deficient mutant; however, our study shows that Rad51E108L is not defective either in the self-interaction or its interaction with the members of the Rad52 epistatic group. Our study thus identifies a novel mutant of Rad51 which, owing to its greater association with Hsp90, exhibits a severe DNA repair defect.IMPORTANCE Rad51-mediated homologous recombination is the major mechanism for repairing DNA double-strand break (DSB) repair in cancer cells. Thus, regulating Rad51 activity could be an attractive target. The sequential assembly and disassembly of Rad51 to the broken DNA ends depend on reversible protein-protein interactions. Here, we discovered that a dynamic interaction with molecular chaperone Hsp90 is one such regulatory event that governs the recruitment of Rad51 onto the damaged DNA. We uncovered that Rad51 associates with Hsp90, and upon DNA damage, this complex dissociates to facilitate the loading of Rad51 onto broken DNA. In a mutant where such dissociation is incomplete, the occupancy of Rad51 at the broken DNA is partial, which results in inefficient DNA repair. Thus, it is reasonable to propose that any small molecule that may alter the dynamics of the Rad51-Hsp90 interaction is likely to impact DSB repair in cancer cells.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas HSP90 de Choque Térmico/metabolismo , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animales , Biología Computacional , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Metilmetanosulfonato/farmacología , Ratones , Mutación , Unión Proteica , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/efectos de los fármacos
2.
Eukaryot Cell ; 14(1): 64-77, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25380755

RESUMEN

The inhibition of Hsp90 in cancerous cells has been correlated with the reduction in double-strand break (DSB repair) activity. However, the precise effect of Hsp90 on the DSB repair pathway in normal cells has remained enigmatic. Our results show that the Hsp82 chaperone, the ortholog of mammalian Hsp90, is indispensable for homologous-recombination (HR)-mediated DNA repair in the budding yeast Saccharomyces cerevisiae. A considerable reduction in cell viability is observed in an Hsp82-inactivated mutant upon methyl methanesulfonate (MMS) treatment as well as upon UV treatment. The loss of Hsp82 function results in a dramatic decrease in gene-targeting efficiency and a marked decrease in the endogenous levels of the key recombination proteins Rad51 and Rad52 without any notable change in the levels of RAD51 or RAD52 transcripts. Our results establish Rad51 as a client of Hsp82, since they interact physically in vivo, and also show that when Hsp82 is inhibited by 17-AAG, Rad51 undergoes proteasomal degradation. By analyzing a number of point mutants with mutations in different domains of Hsp82, we observe a strong association between the sensitivity of an ATPase mutant of Hsp82 to DNA damage and the decreases in the amounts of Rad51 and Rad52 proteins. The most significant observations include the dramatic abrogation of HR activity and the marked decrease in Rad51 focus formation in the charged linker deletion mutant of Hsp82 upon MMS treatment. The charged linker region of Hsp82 is evolutionarily conserved in all eukaryotes, but until now, no biological significance has been assigned to it. Our findings elucidate the importance of this region in DNA repair for the first time.


Asunto(s)
Reparación del ADN , Proteínas HSP90 de Choque Térmico/metabolismo , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Unión Proteica , Proteolisis , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Biochem Parasitol ; 191(1): 28-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24018145

RESUMEN

Telomere position effect efficiently controls silencing of subtelomeric var genes, which are involved in antigenic variation in human malaria parasite Plasmodium falciparum. Although, PfOrc1 has been found to be associated with PfSir2 in the silencing complex, its function in telomere silencing remained uncertain especially due to an apparent lack of BAH domain at its amino-terminal region. Here we report that PfOrc1 possesses a Sir3/Orc1 like silencing activity. Using yeast as a surrogate organism we have shown that PfOrc1 could complement yeast Sir3 activity during telomere silencing in a Sir2 dependent manner. By constructing a series of chimera between PfOrc1 and ScSir3 we have observed that the amino-terminal domain of PfOrc1 harbors silencing activity similar to that present in the amino-terminal domain of ScSir3. We further generated several amino-terminal deletion mutants to dissect out such silencing activity and found that the first seventy amino acids at the amino-terminal domain are dispensable for its activity. Thus our results strongly supports that PfOrc1 may have a role in telomere silencing in this parasite. This finding will help to decipher the mechanism of telomere position effect in P. falciparum.


Asunto(s)
Complejo de Reconocimiento del Origen/genética , Plasmodium falciparum/enzimología , Saccharomyces cerevisiae/enzimología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/deficiencia , Prueba de Complementación Genética , Complejo de Reconocimiento del Origen/metabolismo , Plasmodium falciparum/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA