Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 346: 122666, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245476

RESUMEN

The rising prevalence of bone injuries has increased the demand for minimally invasive treatments. Microbead hydrogels, renowned for cell encapsulation, provide a versatile substrate for bone tissue regeneration. They deliver bioactive agents, support cell growth, and promote osteogenesis, aiding bone repair and regeneration. In this study, we synthesized superparamagnetic iron oxide nanoparticles (Sp) coated with a calcium phosphate layer (m-Sp), achieving a distinctive flower-like micro-cluster morphology. Subsequently, sodium alginate (SA) microbead hydrogels containing m-Sp (McSa@m-Sp) were fabricated using a dropping gelation strategy. McSa@m-Sp is magnetically targetable, enhance cross-linking, control degradation rates, and provide strong antibacterial activity. Encapsulation studies with MC3T3-E1 cells revealed enhanced viability and proliferation. These studies also indicated significantly elevated alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, as confirmed by Alizarin Red S (ARS) and Von Kossa staining, along with increased collagen production within the McSa@m-Sp microbead hydrogels. Immunocytochemistry (ICC) and gene expression studies supported the osteoinductive potential of McSa@m-Sp, showing increased expression of osteogenic markers including RUNX-2, collagen-I, osteopontin, and osteocalcin. Thus, McSa@m-Sp microbead hydrogels offer a promising strategy for multifunctional scaffolds in bone tissue engineering.


Asunto(s)
Alginatos , Regeneración Ósea , Fosfatos de Calcio , Proliferación Celular , Hidrogeles , Osteogénesis , Alginatos/química , Alginatos/farmacología , Animales , Ratones , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Línea Celular , Nanopartículas Magnéticas de Óxido de Hierro/química , Antibacterianos/farmacología , Antibacterianos/química
2.
J Funct Biomater ; 14(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37103267

RESUMEN

Nitinol (NiTi), an alloy of nickel and titanium, wires are an important biomedical material that has been used in catheter tubes, guidewires, stents, and other surgical instruments. As such wires are temporarily or permanently inserted inside the human body, their surfaces need to be smoothed and cleaned in order to prevent wear, friction, and adhesion of bacteria. In this study, NiTi wire samples of micro-scale diameters (i.e., Ø 200 µm and Ø 400 µm) were polished by an advanced magnetic abrasive finishing (MAF) process using a nanoscale polishing method. Furthermore, bacterial adhesion (i.e., Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus)) to the initial and final surfaces of NiTi wires were investigated and compared in order to assess the impact of surface roughness on bacterial adhesion to the surfaces of NiTi wires. The finding revealed that the surfaces of NiTi wires were clean and smooth with a lack of particle impurities and toxic components on the final surface polished using the advanced MAF process. The surface roughness Ra values of the Ø 200 µm and Ø 400 µm NiTi wires were smoothly enhanced to 20 nm and 30 nm from the 140 nm and 280 nm initial surface roughness values. Importantly, polishing the surfaces of a biomedical material such as NiTi wire to nano-level roughness can significantly reduce bacterial adhesion on the surface by more than 83.48% in the case of S. aureus, while in the case of E. coli was more than 70.67%.

3.
J Tissue Eng Regen Med ; 15(10): 869-877, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339581

RESUMEN

Since the discovery that applying electrical stimulation can promote cell growth, proliferation, and tissue regeneration, research on bio-piezoelectric materials is being actively conducted. In this study, a composite material was prepared by mixing polyvinylidene fluoride (PVDF), a conventional piezoelectric polymer, and silk fibroin (SF), a natural piezoelectric material that recently attracting attention. These two polymers were fabricated into a composite fiber mat using electrospinning technology. To find optimal conditions, SF was added in various ratios to prepare electrospun PVDF/SF mats. The characteristics of these PVDF/SF composite mats were then analyzed through various evaluations and in vitro studies. It was confirmed that PVDF and SF were successfully mixed through scanning electron microscope images and structural analysis such as x-ray diffractometer and Fourier transform infrared. The results revealed that adding an appropriate amount of SF could improve the tensile strength, enhance cell proliferation rate, and generate a voltage similar to that of a conventional PVDF-only electrospinning mat. Such fabricated electrospun PVDF/SF composite mats are expected to be useful in the bio-piezoelectric field because they can maintain piezoelectricity while compensating for the shortcomings, such as low physical properties, of a PVDF electrospun mat.


Asunto(s)
Electricidad , Fibroínas/química , Polímeros de Fluorocarbono/química , Nanofibras/química , Polivinilos/química , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Proliferación Celular , Fibroblastos/citología , Fibroblastos/ultraestructura , Ratones , Células 3T3 NIH , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA