Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 96(7): e11073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978428

RESUMEN

The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater sewer lines into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of three different granular activated carbon filter technologies, operating side by side, under similar operating conditions, each having an average 3.8-s contact time. The three activated carbon filters contained each 0.07 m3 of coconut, coal, and coconut mixed with permanganate media. The foul air entering the granular activated carbon filters contained 82% to 83% relative humidity. No moisture removal mechanism was used prior to treatment. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (hydrogen sulfide), rotten vegetables (methyl mercaptan), canned corn (dimethyl sulfide), rotten garlic (dimethyl disulfide), earthy/musty (2-methyl isoborneol and 2-isopropyl 3-methoxy pyrazine), and fecal (skatole and indole). This is the first time a study evaluates the removal of specific odors by simultaneously employing sensory analyses using the odor profile method, which defines the different odor characters and intensities, together with chemical analyses of the odorants causing these odors. The results show that the three granular activated carbon filters, before hydrogen sulfide breakthrough, provided significant improvement in odor intensity and odorant removal. Breakthrough was reached after 57 days for the coconut mixed with permanganate, 107 days for the coconut, and 129 days for the coal granular activated carbon filter. Breakthrough (the critical saturation point of the activated carbon media) was considered reached when the hydrogen sulfide percentage removal diminished to 90% and continued downward. The coconut mixed with permanganate granular activated carbon filter provided the best treatment among the media tested, achieving very good reduction of odorants, as measured by chemical analyses, and reasonable removal of odor intensities, as measured by the odor profile method. The coconut mixed with permanganate granular activated carbon is recommended for short-term odor control systems at sewer networks or emergency plant maintenance situations given its shorter time to breakthrough compared with the other granular activated carbons. The coal and coconut granular activated carbon filters are generally used as the last stage of an odor treatment system. Because of the observed poor to average performance in removing odorants other than hydrogen sulfide, the treatment stage(s) prior to the use of these granulated activated carbons should provide a good methyl mercaptan removal of at least 90% in order to avoid the formation of dimethyl disulfide, which, in the presence of moisture in the carbon filter, emit the characteristic rotten garlic odor. The differences observed between the performances based on odorant removal by chemical analysis compared with those based on sensorial analyses by the odor profile method indicate that both analyses are required to understand more fully the odor dynamics. PRACTITIONER POINTS: Three virgin granulated activated carbon media were evaluated in a field pilot unit using raw collections foul air. Coal, coconut, and coconut mixed with permanganate were tested until breakthrough. Samples were analyzed both chemically (odorants) and sensorially (odors). Coconut mixed with permanganate proved to be the media that better reduced odorants and odors.


Asunto(s)
Carbón Orgánico , Filtración , Odorantes , Carbón Orgánico/química , Filtración/métodos , Cocos/química , Carbono/química
2.
Water Res ; 220: 118691, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35691191

RESUMEN

The treatment of raw foul air that could escape to the atmosphere from the head space of the incoming wastewater into a Southern California Water Resource Recovery Facility was evaluated by using a 1/20th scale pilot unit consisting of five different biological media technologies, operating side by side, under different operating conditions. The removal of six different odor characters from eight chemical odorants present in the foul air were assessed. These were rotten egg (Hydrogen Sulfide), rotten vegetables (Methyl Mercaptan), canned corn (Dimethyl Sulfide), rotten garlic (Dimethyl Disulfide), earthy/musty (2-Methyl Isoborneol and 2-Isopropyl 3-Methyl Pyrazine) and fecal (Skatole and Indole). This is the first time a study evaluates specific odors by simultaneously employing sensory analyses using the Odor Profile Method, which defines the different odor characters and intensities, together with chemical analyses of the compounds causing these odors, known as odorants. The paper discusses the efficiencies in removing odor characters as well as odorants by two different bioscrubbers (reticulated polyurethane cube foam and polypropylene mesh with layered polyester foam) and three different biofilters (engineered media, seashells, and lava rock). The results show that the two bioscrubbers, even with greater empty bed gas retention times, did not provide significant improvement in odor intensity and odorant removal. However, the biofilters showed that larger empty bed gas retention times provided significant improvements in diminishing the odor intensities and better odorant removal. The biofilter with lava rock media at 45 s empty bed gas retention time provided the best treatment among the technologies tested, achieving the following odorant reductions: 99.8% for hydrogen sulfide, 98.4% for methyl mercaptan, 57.0% for dimethyl sulfide, and 52.7 for dimethyl disulfide. This biofilter also achieved the following odor intensity reductions: 47% for rotten vegetable odors, 50% for earthy/musty odors, and 100% for fecal odors. The odor panel detected odors by the Odor Profile Method that were below the detection limit of the corresponding chemical analytical method for specific chemical compounds causing these odors. Differences were observed between the performances of bioscrubbers and biofilters, based on odorant removal compared to those based on sensorial analyses, indicating that both analyses are required to understand more fully the odor dynamics. Furthermore, a total odor removal of 99.2% was observed by the dilution to threshold olfactometer method even though nearly half of the rotten vegetable and earthy/musty odors remained based upon the Odor Profile Method. This shows the olfactometer method did not correctly define the degree of odor nuisance in the foul air in this study. Bioscrubbers have in general a better economic return when used at low EBGRTs and as preliminary (first stage) treatment systems. Biofilters are more effective when used at high EBGRTs and can be used as stand-alone or polishing systems.


Asunto(s)
Sulfuro de Hidrógeno , Aguas Residuales , Odorantes/análisis , Compuestos de Sulfhidrilo , Aguas Residuales/análisis
3.
Water Environ Res ; 93(9): 1487-1495, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33728726

RESUMEN

To determine accurately odorant concentrations at its worst-case condition for planning and odor treatment design purposes, corrective factors need to be factored into the foul air monitoring results of water resource recovery facilities. These corrective factors will adjust each odorant concentration for usual seasonal and daily odor variations. Typically, corrective factors are taken from hydrogen sulfide continuous readings and applied to all identified sulfur odorants. This paper demonstrates that it is incorrect to assume all reduced sulfur compounds mimic the daily fluctuations observed in hydrogen sulfide. Reduced sulfur odorant results from the foul air tested at two different water resource recovery facility process areas over a portion of the daily cycle have been found to behave independently from hydrogen sulfide. Tests have shown that the corrective factors for each reduced sulfur odorant vary notably from facility to facility and enormously from process area to process area. This discovery is important for the improvement of the science of odor control because accurately determining worst-case odor concentrations affects the modeling (the magnitude of odor nuisance) and the level of treatment (choosing a technology or combination of technologies) needed for odor abatement. PRACTITIONER POINTS: When conducting foul air assessments, corrective factors are recommended to adjust the results for daily and seasonal variations. H2 S continuous monitors are readily available and of widespread use, therefore they are certainly useful to determine corrective factors. H2 S continuous monitors, however useful for H2 S, do not necessarily apply to the rest of the reduced sulfur compounds. Intermittent sampling and analysis for reduced sulfur compounds at each facility process location over a daily cycle should be conducted. Results will show the independence of each reduced sulfur compound and the importance of this testing to obtain corrective factors applicable to the facility being assessed.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Azufre , Contaminantes Atmosféricos/análisis , Odorantes/análisis , Azufre , Aguas Residuales
4.
Sci Total Environ ; 572: 1231-1237, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27522283

RESUMEN

N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM.


Asunto(s)
Antibacterianos/química , Dimetilnitrosamina/química , Desinfectantes/química , Contaminantes Químicos del Agua/química , Cloraminas/química , Purificación del Agua
5.
J Environ Manage ; 180: 257-63, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235805

RESUMEN

Odorous emissions from wastewater treatment plants (WWTPs) are an annoyance for neighboring communities. This article, for the first time, quantitatively reports on an evaluation of the presence of fecal odorants identified in air samples from two exemplary WWTPs by the odor profile method (OPM) and chemical analysis. The fecal odorants indole and skatole were identified by Gas Chromatography-Mass Spectrometry. The odor threshold concentration of skatole was determined to be 0.327 ng/L (60 pptV) in Teflon Bags by an expert panel. Skatole was found to be the primary chemical leading to fecal odor, due to its odor concentration to odor threshold concentration ratio that ranged from 2.8 to 22.5. The Weber-Fechner law was followed by pure skatole, but was not applicable when there was a mixture of fecal odorants and other odorant types present in WWTP air emission samples. This is probably caused by antagonism with other odorant types. Several existing odor control treatment methods for fecal odorants were evaluated at different wastewater treatment operations at two WWTPs by the OPM and chemical analysis for indole and skatole. Chemical scrubbing and biofiltration performed best in removing fecal odors among current control technologies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Odorantes/análisis , Olfato , Aguas Residuales , Adolescente , Adulto , Anciano , California , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Persona de Mediana Edad , Instalaciones de Eliminación de Residuos , Purificación del Agua/métodos , Adulto Joven
6.
Water Res ; 95: 300-9, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27015632

RESUMEN

The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed).


Asunto(s)
Dimetilnitrosamina , Purificación del Agua , Agua Potable , Análisis Multivariante , Trihalometanos , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA