Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(23): 9798-9811, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38787690

RESUMEN

The continuously increasing rate of breast cancer is one of the major threats to female health worldwide. Recently, palladium complexes have emerged as impressive candidates with effective biocompatibility and anticancer activities. Hence, in the present study, we report a new series of palladium complexes bearing NNS pincer ligands for cytotoxicity studies. The reaction of thiophenol/4-chlorothiophenol/4-methylthiophenol/4-methoxythiophenol with 2-bromo-N-quinolin-8-yl-acetamide in the presence of sodium hydroxide in ethanol at 80 °C gave [C9H6N-NH-C(O)-CH2-S-Ar] [Ar = C6H5 (L1), C6H4Cl-4 (L2), C6H4Me-4 (L3), and C6H4-OMe-4 (L4)]. The corresponding reaction of L1-L4 with Na2PdCl4 in methanol at room temperature for 3 h resulted in complexes [(L1-H)PdCl] (C1), [(L2-H)PdCl] (C2), [(L3-H)PdCl] (C3), and [(L4-H)PdCl] (C4). All new compounds have been characterized by spectroscopic analyses. The structures of complexes C1, C3, and C4 have also been determined from single-crystal X-ray diffraction data. The cytotoxicities of L1-L4 and C1-C4 have been investigated for breast cancer 4T1 and pancreatic cancer MIA-PaCa-2 cells. The IC50 values for complexes C2 and C3 were observed to be comparable to or higher than those of cisplatin. The stressed morphology and cell death of cancerous cells were successfully observed through cellular morphology analysis and the assessment of cytoskeleton damage.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Ensayos de Selección de Medicamentos Antitumorales , Paladio , Neoplasias Pancreáticas , Paladio/química , Paladio/farmacología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Femenino , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Relación Estructura-Actividad , Cristalografía por Rayos X
2.
RSC Adv ; 13(35): 24450-24459, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588977

RESUMEN

Developing cost-effective electrocatalysts using earth-abundant metal as an alternative to expensive precious metal catalyst remains a key challenge for researchers. Several strategies are being researched/tested for making low-cost transition metal complexes with controlled electron-density and coordination flexibility around the metal center to enhance their catalytic activity. Herein, we report a novel lutidine coordinated cobalt(ii) acetate complex [(3,5-lutidine)2Co(OAc)2(H2O)2] (1) as a promising electrocatalyst for oxygen evolution reaction (OER). Complex 1 was characterized by FT-IR, elemental analysis, and single crystal X-ray diffraction data. The structure optimization of complex 1 was also done using DFT calculation and the obtained geometrical parameters were found to be in good agreement with the parameters obtained from the solid state structure obtained through single crystal X-ray diffraction data. Further, the molecular electrostatic potential (MEP) maps analysis of complex 1 observed electron rich centers that were found to be in agreement with the solid-state structure. It was understood that the coordination of lutidine as a Lewis base and acetate moiety as a flexible ligand will provide more coordination flexibility around the metal center to facilitate the catalytic reaction. Further, the electron rich centers around metal center will also support the enhancement of their catalytic activity. Complex 1 shows impressive OER activity, even better than the state-of-the-art IrO2 catalyst, in terms of turnover frequency (TOF: 0.05) and onset potential (1.50 V vs. RHE). The TOF for complex 1 is two and half times higher, while the onset potential is ca. 20 mV lower, than the benchmark IrO2 catalyst studied under identical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA