Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 12(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560245

RESUMEN

In this work, hybrid filler systems consisting of multi-walled carbon nanotubes (MWCNTs) and nano carbon black (nCB) were incorporated by melt mixing in low-density polyethylene (LDPE). To hybrid systems a mixture of MWCNTs and nCB a mass ratio of 1:1 and 3:1 were used. The purpose was to study if the synergistic effects can be achieved on tensile strength and electrical and thermal conductivity. The dispersion state of carbon nanofillers in the LDPE matrix has been evaluated with scanning electron microscopy. The melting and crystallization behavior of all nanocomposites was not significantly influenced by the nanofillers. It was found that the embedding of both types of carbon nanofillers into the LDPE matrix caused an increase in the value of Young's modulus. The results of electrical and thermal conductivity were compared to LDPE nanocomposites containing only nCB or only MWCNTs presented in earlier work LDPE/MWCNTs. It was no synergistic effects of nCB in multi-walled CNTs and nCB hybrid nanocomposites regarding mechanical properties, electrical and thermal conductivity, and MWCNTs dispersion. Since LDPE/MWCNTs nanocomposites exhibit higher electrical conductivity than LDPE/MWCNTs + nCB or LDPE/nCB nanocomposites at the same nanofiller loading (wt.%), it confirms our earlier study that MWCNTs are a more efficient conductive nanofiller. The presence of MWCNTs and their concentration in hybrid nanocomposites was mainly responsible for the improvement of their thermal conductivity.

2.
Nanomaterials (Basel) ; 8(4)2018 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-29690551

RESUMEN

In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures.

3.
Colloid Polym Sci ; 293(10): 2941-2947, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26412931

RESUMEN

The research was planned to test electrical properties of polymer films made from polyurethane cationomers with 0-2 wt.% graphene admixture. The cationomers were synthetized in the reaction of 4,4'-methylenebis(phenyl isocyanate), polycaprolactone diol (M = 2000), N-methyldiethanolamine, and formic acid. It was found that addition of approx. 2 wt.% of graphene causes the loss of volume resistivity by three orders of magnitude and percolation threshold is already set at approx. 1 wt.%. The frequency characteristic of a real part of permittivity ε' and imaginary part of permittivity ε″ were measured for the tested films. On the base of Havriliak-Negami equation, parameters of relaxation functions in frequency domain were estimated for samples containing various contents of graphene. The influence of the cationomer phase structure on observed changes of dielectric losses coefficient tgδ in the full-measuring frequency spectrum was discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA