Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400198, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150329

RESUMEN

Statistical copolymers are commercially important because their properties can be tuned by comonomer selection and composition. Rubbery-state styrene (S)/n-butyl acrylate (nBA) copolymers have previously been reported to exhibit facile, autonomous self-healing over a narrow composition band (47/53 to 53/47 mol%). The need for a narrow composition band is explained by alternating comonomer sequences that accommodate interchain secondary bonding. It is hypothesized that copolymers that achieve interchain secondary bonding without alternating sequences can exhibit facile self-healing over a broad composition range. 2-ethylhexyl acrylate (EHA) is identified as yielding sequence-independent secondary bonding interactions. For these interactions it is tested experimentally by glass transition breadth in rubbery-state S/EHA copolymers, with S/n-hexyl acrylate (nHA) and S/nBA copolymers as controls. The n-alkyl acrylate random copolymers exhibit enhanced glass transition breadths over narrow composition bands that correspond to autonomous self-healing. In contrast, S/EHA copolymers exhibit much greater glass transition breadths than S/nHA and S/nBA copolymers at all compositions tested as well as self-healing of damage over a broad composition range with full tensile-property recovery, often in 3-10 h. Characterization of glass transition breadth may serve as a simple screening tool for identifying copolymers that exhibit broad-composition-range, facile, autonomous self-healing and contribute to polymer resilience and sustainability.

2.
ACS Macro Lett ; 13(9): 1147-1155, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39150319

RESUMEN

We synthesized covalent adaptable networks (CANs) made from chain-growth comonomers using nonisocyanate thiourethane chemistry. We derivatized glycidyl methacrylate with cyclic dithiocarbonate (GMA-DTC), did a free-radical polymerization of n-hexyl methacrylate with GMA-DTC to obtain a statistical copolymer with 8 mol % GMA-DTC, and cross-linked it with difunctional amine. The dynamic covalent thionourethane and disulfide bonds lead to CAN reprocessability with full recovery of the cross-link density; the temperature dependence of the rubbery plateau modulus indicates that associative character dominates the dynamic response. The CAN exhibits complete self-healing at 110 °C with tensile property recovery and excellent creep resistance at 90-100 °C. Stress relaxation at 140-170 °C reveals an activation energy of 105 ± 6 kJ/mol, equal to the activation energy (Ea) of the CAN poly(n-hexyl methacrylate) backbone α-relaxation. We hypothesize that CANs with exclusively or predominantly associative dynamics have their stress-relaxation Ea defined by the α-relaxation Ea. This hypothesis is supported by stress relaxation studies on a similar poly(n-lauryl methacrylate)-based CAN.

3.
ACS Appl Mater Interfaces ; 14(18): 21535-21543, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35500102

RESUMEN

The distribution of filler particles within a polymer matrix nanocomposite has a profound influence on the properties and processability of the material. While filler aggregation and percolation can significantly enhance particular functionalities such as thermal and electrical conductivity, the formation of larger filler clusters and networks can also impair mechanical properties like strength and toughness and can also increase the difficulty of processing. Here, a strategy is presented for the preparation of functional composites that enhance thermal conductivity over polymer alone, without negatively affecting mechanical performance or processability. Thermal cross-linking of self-suspended polymer grafted nanoparticles is used to prepare highly filled (>50 vol %) macroscopic nanocomposites with homogeneously dispersed, non-percolating alumina particles in an organic matrix. The initial composites use low glass transition temperature polymer grafts and thus are flexible and easily shaped by thermoforming methods. However, after thermal aging, the resulting materials display high stiffness (>10 GPa) and enhanced thermal conductivity (>100% increase) and also possess mechanical strength similar to commodity plastics. Moreover, the covalent bonding between matrix and filler allows for the significant elevation of thermal conductivity despite the extensive interfacial area in the nanocomposite. The thermal aging of polymer grafted nanoparticles is therefore a promising method for producing easily processable, mechanically sturdy, and macroscopic nanocomposites with improved thermal conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA