Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Transl Oncol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292390

RESUMEN

BACKGROUND: Cancer driver genes (CDGs) have been reported as key factors influencing the progression of lung adenocarcinoma (LUAD). However, the role of CDGs in LUAD prognosis has not been fully elucidated. METHODS: LUAD transcriptome data and CDG-related data were obtained from public databases and literature. Differentially expressed CDGs (DE-CDGs) greatly associated with LUAD survival (P < 0.05) were identified to establish a prognostic model. In addition, immune analysis of high-risk (HR) and low-risk (LR) groups was conducted by utilizing the CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms to assess immune differences. Subsequently, mutation analysis was conducted using maftools. Finally, candidate drugs were identified using the CellMiner database. RESULTS: 40 DE-CDGs significantly associated with LUAD survival and 11 DE-CDGs associated with prognosis were identified through screening. Regression analysis revealed that risk score can independently predict LUAD prognosis (P < 0.05). Immune landscape analysis revealed that compared to the HR group, the LR group had higher immune scores and high infiltration of various immune cells such as follicular helper B cells and T cells. Mutation landscape analysis demonstrated that missense mutation was the most common mutation type in both risk groups. Drug prediction analysis revealed strong correlations of fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, SR16157, motesanib, AZD-9496, XK-469, dimethylfasudil, P-529, and imatinib with the model genes, suggesting their potential as candidate drugs targeting the model genes. CONCLUSION: This study identified 11 effective biomarkers, DE-CDGs, which can predict LUAD prognosis and explored the biological significance of CDGs in LUAD prognosis, immunotherapy, and treatment.

2.
Nanotechnology ; 34(26)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36940471

RESUMEN

The membrane-based liquid desiccant dehumidification system is a newly developed method in the field of air dehumidification. In this study, double-layer nanofibrous membranes (DLNMs) with directional vapor transport and water repellency for liquid dehumidification were fabricated by a simple electrospinning process. Specifically, the combination of thermoplastic polyurethane nanofibrous membrane and polyvinylidene fluoride (PVDF) nanofibrous membrane forms a cone-like structure in DLNMs, resulting in directional vapor transportation. The nanoporous structure and rough surface of PVDF nanofibrous membrane provide waterproof performance for DLNMs. Compare with the commercial membranes, the proposed DLNMs have a significantly higher water vapor permeability coefficient, which is as high as 539.67 g·µm m-2·24 h·Pa. This study not only provides a new route to construct a directional vapor transport and waterproof membrane, but also demonstrates the huge application prospect of the nanofibrous membrane formed by electrospinning in the field of solution dehumidification.

3.
Waste Manag ; 157: 159-167, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36543059

RESUMEN

The demand for polypropylene (PP) melt-blown materials has dramatically increased due to the COVID-19 pandemic. It has caused serious environmental problems because of the lack of effective treatment for the waste PP melt-blown materials. In this study, we propose a green and sustainable recycling method to create PP sponges from waste PP melt-blown material for oil spill cleaning by freeze-drying and thermal treatment techniques. The recycling method is simple and without secondary pollution to the environment. The developed recycling method successfully transforms 2D laminar dispersed PP microfibers into elastic sponges with a 3D porous structure, providing the material with good mechanical properties and promotes its potential application in the field of oil spill cleaning. The morphology structure, thermal properties, mechanical properties, and oil absorption properties are tested and characterized. The PP sponges with a three-dimensional porous network structure show an exceedingly low density of >0.014 g/cm3, a high porosity of <98.77 %, and a high water contact angle range of 130.4-139.9°. Moreover, the PP sponges own a good absorption capacity of <47.61 g/g for different oil and solvents. In particular, the compressive modulus of the PP sponges is 33.59-201.21 kPa, which is higher than that of most other fiber-based porous materials, indicating that the PP sponges have better durability under the same force. The excellent comprehensive performance of the PP sponges demonstrates the method developed in this study has large application potential in the field of the recycle of waste PP melt-blown materials.


Asunto(s)
COVID-19 , Polipropilenos , Humanos , Polipropilenos/química , Pandemias , Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA