Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 417: 126104, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34229393

RESUMEN

Tetrabromobisphenol A (TBBPA) has aroused widespread pollution in industrial wastewater. Microbial fuel cell (MFC) was proved powerful in organics degradation and simultaneous resource recovery during wastewater treatment. However, the TBBPA biotransformation potential, pathway and the related molecular mechanism remain poorly understood. In this study, the enhanced degradation and detoxification performance of TBBPA in MFC anode was confirmed, evidenced by the shorter degradation period (2.3 times shorter) and less generation of bisphenol A. UPLC-QTOF-MS analysis verified TBBPA metabolism went through reductive debromination, hydrolytic debromination, oxidative ring cleavage and o-methylation. Accompanied with those biochemical processes, the metabolites underwent dynamic changes. The distinctly decreased abundance and fewer interactions with other functional genera for the potential reductive dehalogenators (Pseudomonas, etc.) possibly led to the suppressed reductive debromination (5.1%) in the closed bioanode. Otherwise, the more abundant potential function bacteria with more collaborated interrelations, including hydrolytic dehalogenators (Acinetobacter, etc.), aromatics degrading bacteria (Geobacter, Holophaga, etc.) and electroactive bacteria (Geobacter, Desulfovibrio, etc.) made great sense to the enhanced hydrolytic debromination and detoxification of TBBPA. This study revealed that MFC anode was beneficial to TBBPA degradation and provided theoretical support for the decomposition and transformation of micro-pollutants in the municipal sewage treatment coupled with MFC process.


Asunto(s)
Fuentes de Energía Bioeléctrica , Bifenilos Polibrominados , Biodegradación Ambiental , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA