Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067073

RESUMEN

Multiple stressors, including climate change, eutrophication, and pesticide contamination, are significant drivers of the decline in lake zoobenthos. Zoobenthos play a crucial role in aquatic ecosystems, impacting energy dynamics, nutrient cycling, and sediment degradation. However, these stressors have led to a decrease in the abundance and diversity of zoobenthos, resulting in notable changes in species composition and structure. Eutrophication typically increases zoobenthos abundance while reducing taxonomic diversity. Climate change, such as warming and heatwaves, also affects the zoobenthos community structure, with different species exhibiting varying levels of adaptability to temperature changes. Additionally, pesticides like imidacloprid have negative effects on the survival and growth of zoobenthos. However, the interactions between imidacloprid and other stressors remain understudied. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes. We combined nutrient loading, sustained warming, and the imidacloprid pesticide to test how these stressors interactively influence the survival and community of zoobenthos. The experimental results demonstrate that elevated temperatures have a significant impact on aquatic benthic organisms under different treatment conditions. The increase in temperature led to a notable rise in species richness and α-diversity, primarily attributed to the stimulation of metabolic activities in zoobenthos, promoting their growth and reproduction. This finding underscores the potential influence of climate change on aquatic benthic ecosystems, particularly in terms of its promoting effect on α-diversity. However, it is essential to note that elevated temperatures also reduced ß-diversity among different sites, implying a potential trend toward homogenization in zoobenthos communities under warmer conditions. Moreover, this study revealed the interactive effects of multiple stressors on the diversity of aquatic benthic communities. Specifically, the pesticide imidacloprid's impact on zoobenthos is not isolated but demonstrates complex effects within various treatment interactions. In the presence of both temperature elevation and the addition of imidacloprid, the presence of imidacloprid appears to counteract the adverse effects of temperature elevation, resulting in increased species diversity. However, when imidacloprid coincides with nutrient input, it significantly affects α-diversity negatively. These findings highlight the complexity of zoobenthos responses to multiple stressors and how these factors influence both α-diversity and ß-diversity. They provide valuable insights for further research on the conservation and management of ecosystems.

2.
PLoS One ; 18(6): e0287482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352314

RESUMEN

The complex network framework has been successfully used to model interactions between entities in Complex Systems in the Biological Sciences such as Proteomics, Genomics, Neuroscience, and Ecology. Networks of organisms at different spatial scales and in different ecosystems have provided insights into community assembly patterns and emergent properties of ecological systems. In the present work, we investigate two questions pertaining to fish species assembly rules in US river basins, a) if morphologically similar fish species also tend to be phylogenetically closer, and b) to what extent are co-occurring species that are phylogenetically close also morphologically similar? For the first question, we construct a network of Hydrologic Unit Code 8 (HUC8) regions as nodes with interaction strengths (edges) governed by the number of common species. For each of the modules of this network, which are found to be geographically separated, there is differential yet significant evidence that phylogenetic distance predicts morphological distance. For the second question, we construct and analyze nearest neighbor directed networks of species based on their morphological distances and phylogenetic distances. Through module detection on these networks and comparing the module-level mean phylogenetic distance and mean morphological distance with the number of basins of common occurrence of species in modules, we find that both phylogeny and morphology of species have significant roles in governing species co-occurrence, i.e. phylogenetically and morphologically distant species tend to co-exist more. In addition, between the two quantities (morphological distance and phylogentic distance), we find that morphological distance is a stronger determinant of species co-occurrences.


Asunto(s)
Ecosistema , Ríos , Animales , Filogenia , Ecología , Peces/genética
3.
Nat Commun ; 14(1): 2332, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087448

RESUMEN

While biological invasions are recognized as a major threat to global biodiversity, determining non-native species' abilities to establish in new areas (species invasiveness) and the vulnerability of those areas to invasions (community invasibility) is challenging. Here, we use trait-based analysis to profile invasive species and quantify the community invasibility for >1,800 North American freshwater fish communities. We show that, in addition to effects attributed to propagule pressure caused by human intervention, species with higher fecundity, longer lifespan and larger size tend to be more invasive. Community invasibility peaks when the functional distance among native species was high, leaving unoccupied functional space for the establishment of potential invaders. Our findings illustrate how the functional traits of non-native species determining their invasiveness, and the functional characteristics of the invaded community determining its invasibility, may be identified. Considering those two determinants together will enable better predictions of invasions.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Humanos , Especies Introducidas , Agua Dulce , Peces , América del Norte
4.
J Environ Manage ; 329: 117025, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563445

RESUMEN

Marine aquaculture is increasingly gaining importance as a source of food with high nutritional value. However, the expansion of aquaculture could be responsible for water contamination that influences the environmental quality of coastal ecosystems, and emissions of greenhouse gases (GHG) that affect global climate. China is the world's largest producer of marine aquaculture protein, which demands robust studies to assess the corresponding GHG emissions and intensity. To fill in this knowledge gap, the current study quantifies and analyzes GHG emissions and intensity (emission intensity is defined as GHG emissions per unit of production) from Chinese marine aquaculture (marine aquaculture production) over the past 30 years (1991-2020). The production of marine aquaculture comes from the China Fisheries Statistical Yearbooks. And the GHG emissions and intensity were calculated based on five sectors (commercial feed, trash fish, N2O, CH4, and energy) by Emission-Factor Approach. The results suggest that, excluding shellfish and algae, GHG emissions of ten coastal provinces (excluding Shanghai, Hong Kong, Taiwan, and Macau) increased from 2 Mt (109 kg) CO2-eq in 1991 to 25 Mt CO2-eq in 2020. In contrast, GHG emission intensity decreased in the same period from 7.33 (t CO2-eq/t production) to 6.34 (t CO2-eq/t production), indicating a progressive mitigation in GHG emissions per unit of product, hence sustainably satisfying a growing demand for food. As a result, China's marine aquaculture seems to be paving a promising way towards the neutrality of GHG emissions. In most provinces, GHG is on the rise, and only in Tianjin is on the decline in recent years. For the emissions intensity, the values of more than half provinces showed the downtrends. In addition, by considering the ratio of shellfish and algae, Chinese marine aquaculture can improve the net zero goal for GHG emissions of the sector. Finally, results also reveal for the first time the changes in taxonomic composition and spatial GHG emissions and intensity, providing new understanding and scientific bases to elaborate consistent mitigation strategies for an expanding global marine aquaculture.


Asunto(s)
Gases de Efecto Invernadero , Animales , Humanos , Efecto Invernadero , Dióxido de Carbono/análisis , Ecosistema , Pueblos del Este de Asia , China , Acuicultura
5.
Science ; 371(6531): 835-838, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602854

RESUMEN

Freshwater fish represent one-fourth of the world's vertebrates and provide irreplaceable goods and services but are increasingly affected by human activities. A new index, Cumulative Change in Biodiversity Facets, revealed marked changes in biodiversity in >50% of the world's rivers covering >40% of the world's continental surface and >37% of the world's river length, whereas <14% of the world's surface and river length remain least impacted. Present-day rivers are more similar to each other and have more fish species with more diverse morphologies and longer evolutionary legacies. In temperate rivers, where the impact has been greatest, biodiversity changes were primarily due to river fragmentation and introduction of non-native species.


Asunto(s)
Biodiversidad , Peces , Actividades Humanas , Ríos , Animales , Clima , Peces/clasificación , Humanos , Filogenia
6.
Front Plant Sci ; 10: 161, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853965

RESUMEN

Different non-mutually exclusive mechanisms interactively shape large-scale diversity patterns. However, our understanding of multi-faceted diversity and their determinants in aquatic ecosystems is far from complete compared to terrestrial ones. Here, we use variation partitioning based on redundancy analysis to analyze the relative contribution of environmental and spatial variables to the patterns of phylogenetic, taxonomic, and functional diversity in macrophyte assemblages across 214 Chinese watersheds. We found extremely high spatial congruence among most aspects of biodiversity, with some important exceptions. We then used variation partitioning to estimate the proportions of variation in macrophyte biodiversity explained by environmental and spatial variables. All diversity facets were optimally explained by spatially structured environmental variables, not the pure environment effect, implying that macrophyte are taxonomically, phylogenetically, and functionally clustered in space, which might be the result of the interaction of environmental and/or evolutionary drives. We demonstrate that macrophytes might face extensive dispersal limitations across watersheds such as topography and habitat fragmentation and availability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA