RESUMEN
BACKGROUND: A high frequency of primary central nervous system (CNS) sarcomas was observed in Peru. This article describes the clinical characteristics, biological characteristics, and outcome of 70 pediatric patients. METHODS: Data from 70 pediatric patients with primary CNS sarcomas diagnosed between January 2005 and June 2018 were analyzed. DNA methylation profiling from 28 tumors and gene panel sequencing from 27 tumors were available. RESULTS: The median age of the patients was 6 years (range, 2-17.5 years), and 66 of 70 patients had supratentorial tumors. DNA methylation profiling classified 28 of 28 tumors as primary CNS sarcoma, DICER1 mutant. DICER1 mutations were found in 26 of 27 cases, TP53 mutations were found in 22 of 27 cases, and RAS-pathway gene mutations (NF1, KRAS, and NRAS) were found in 19 of 27 tumors, all of which were somatic (germline control available in 19 cases). The estimated incidence in Peru was 0.19 cases per 100,000 children (<18 years old) per year, which is significantly higher than the estimated incidence in Germany (0.007 cases per 100,000 children [<18 years] per year; P < .001). Patients with nonmetastatic disease (n = 46) that were treated with a combination therapy had a 2-year progression-free survival (PFS) rate of 58% (95% CI, 44%-76%) and a 2-year overall survival rate of 71% (95% CI, 57%-87%). PFS was the highest in patients treated with chemotherapy with ifosfamide, carboplatin, and etoposide (ICE) after upfront surgery followed by radiotherapy and ICE (2-year PFS, 79% [59%-100%], n = 18). CONCLUSIONS: Primary CNS sarcoma with DICER1 mutation has an aggressive clinical course. A combination of surgery, chemotherapy, and radiotherapy seems beneficial. An underlying cancer predisposition syndrome explaining the increased incidence in Peruvian patients has not been identified so far. LAY SUMMARY: A high incidence of primary pediatric central nervous system sarcomas in the Peruvian population is described. Using sequencing technologies and DNA methylation profiling, it is confirmed that these tumors molecularly belong to the recently proposed entity "primary central nervous system sarcomas, DICER1 mutant." Unexpectedly, DICER1 mutations as well as all other defining tumor mutations (TP53 mutations and RAS-pathway mutations) were not inherited in all 19 patients where analyzation was possible. These tumors have an aggressive clinical course. Multimodal combination therapy based on surgery, ifosfamide, carboplatin, and etoposide chemotherapy, and local radiotherapy leads to superior outcomes.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Sarcoma , Adolescente , Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/genética , Niño , Preescolar , ARN Helicasas DEAD-box/genética , Humanos , Mutación , Perú/epidemiología , Ribonucleasa III/genética , Sarcoma/tratamiento farmacológico , Sarcoma/genéticaRESUMEN
Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making.