Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(38): 8541-8547, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37724873

RESUMEN

Persistent spin textures are highly desirable for applications in spintronics, as they allow for long carrier spin lifetimes. However, they are also rare, as they require a delicate balance between spin-momentum coupling parameters. We used density functional theory simulations to predict the possibility of achieving these desirable spin textures through the application of uniaxial stress. Hybrid organic-inorganic perovskite MPSnBr3 (MP = CH3PH3) is a ferroelectric semiconductor which exhibits persistent spin textures near its conduction band minimum and mostly Rashba type spin textures in the vicinity of its valence band maximum. Application of uniaxial stress leads to the gradual evolution of the valence band spin textures from mostly Rashba type to quasipersistent ones under a tensile load and to pure Rashba or quasipersistent ones under a compressive load. The material exhibits flexibility, a rubber-like response, and both positive and negative piezoelectric constants. A combination of such properties may create opportunities for flexible and rubbery spintronic devices.

2.
Inorg Chem ; 56(9): 4918-4927, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28375611

RESUMEN

In this work, we focus on [(CH3)2NH2]PbI3, a member of the [AmineH]PbI3 series of hybrid organic-inorganic compounds, reporting a very easy mechanosynthesis route for its preparation at room temperature. We report that this [(CH3)2NH2]PbI3 compound with 2H-perovskite structure experiences a first-order transition at ≈250 K from hexagonal symmetry P63/mmc (HT phase) to monoclinic symmetry P21/c (LT phase), which involves two cooperative processes: an off-center shift of the Pb2+ cations and an order-disorder process of the N atoms of the DMA cations. Very interestingly, this compound shows a dielectric anomaly associated with the structural phase transition. Additionally, this compound displays very large values of the dielectric constant at room temperature because of the appearance of a certain conductivity and the activation of extrinsic contributions, as demonstrated by impedance spectroscopy. The large optical band gap displayed by this material (Eg = 2.59 eV) rules out the possibility that the observed conductivity can be electronic and points to ionic conductivity, as confirmed by density functional theory calculations that indicate that the lowest activation energy of 0.68 eV corresponds to the iodine anions, and suggests the most favorable diffusion paths for these anions. The obtained results thus indicate that [(CH3)2NH2]PbI3 is an electronic insulator and an ionic conductor, where the electronic conductivity is disfavored because of the low dimensionality of the [(CH3)2NH2]PbI3 structure.

3.
Sci Rep ; 5: 17700, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26639608

RESUMEN

The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology.

4.
Inorg Chem ; 54(5): 2109-16, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25664382

RESUMEN

We report on the hybrid inorganic-organic ammonium compound [NH4][Cd(HCOO)3], which displays a most unusual framework structure: instead of the expected 4(9)·6(6) topology, it shows an ABX3 perovskite architecture with the peculiarity and uniqueness (among all the up-to-date reported hybrid metal formates) that the Cd ions are connected only by syn-anti formate bridges, instead of anti-anti ones. This change of the coordination mode of the formate ligand is thus another variable that can provide new possibilities for tuning the properties of these versatile functional metal-organic framework materials. The room-temperature crystal structure of [NH4][Cd(HCOO)3] is noncentrosymmetric (S.G.: Pna21) and displays a polar axis. DFT calculations and symmetry mode analysis show that the rather large polarization arising from the off-center shift of the ammonium cations in the cavities (4.33 µC/cm(2)) is partially canceled by the antiparallel polarization coming from the [Cd(HCOO)3](-) framework, thus resulting in a net polarization of 1.35 µC/cm(2). As shown by second harmonic generation studies, this net polarization can be greatly increased by applying pressure (Pmax = 14 GPa), an external stimulus that, in turn, induces the appearance of new structural phases, as confirmed by Raman spectroscopy.

6.
J Chem Phys ; 138(1): 014308, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23298042

RESUMEN

The electronic structure of croconic acid in the gas phase has been investigated by means of core level and valence band photoemission spectroscopy and compared with hybrid Heyd-Scuseria-Ernzerhof density functional theory calculations. The results have been compared with the corresponding ones of the condensed phase. In the gas phase, due to the absence of hydrogen bond intermolecular interactions, the O 1 s core level spectrum shows a shift of binding energy between the hydroxyl (O-H) and the carbonyl group (C=O) of 2.1 eV, which is larger than the condensed phase value of 1.6 eV. Interestingly, such a shift decreases exponentially with the increase of the O-H distance calculated from theory. The significant differences between the gas and condensed phase valence band spectra highlight the important role played by the hydrogen bonding in shaping the electronic structure of the condensed phase.

7.
J Phys Chem A ; 116(47): 11548-52, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23106099

RESUMEN

The electronic structures of tris(8-hydroxyquinolinato)-erbium(III) (ErQ(3)) and tris(8-hydroxyquinolinato)-aluminum(III) (AlQ(3)) have been studied by means of core level and valence band photoemission spectroscopy with the theoretical support of hybrid Heyd-Scuseria-Ernzerhof density functional theory, to investigate the role played by the central metal atom. A lower binding energy (0.2 eV and 0.3 eV, respectively) of the O 1s and N 1s core levels has been observed for ErQ(3) with respect to AlQ(3). Differences in the valence band spectra, mainly related to the first two peaks next to the highest occupied molecular orbital (HOMO), have been ascribed to an energetic shift (to 0.4 eV lower energies for ErQ(3)) of the σ molecular orbital between the oxygen atoms and the central metal atom. A lower (by 0.5 eV) ionization energy has been measured for the ErQ(3). The interpretation of these results is based on a reduced interaction between the central metal atom and the ligands in ErQ(3), with increased electronic charge around the ligands, due to the higher ionic radius and the lower electronegativity of Er with respect to Al.

8.
Phys Chem Chem Phys ; 13(26): 12186-90, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21647478

RESUMEN

Based on density functional theory calculations and group theoretical analysis, we have studied NaLaMnWO(6) compound which has been recently synthesized [G. King, A. Wills and P. M. Woodward, Phys. Rev. B: Condens. Matter, 2009, 79, 224428] and belongs to the AA'BB'O(6) family of double perovskites. At low temperature, the structure has monoclinic P2(1) symmetry, with layered ordering of the Na and La ions and rocksalt ordering of Mn and W ions. The Mn atoms show an antiferromagnetic collinear spin ordering, and the compound has been reported as a potential multiferroic. By comparing the low symmetry structure with a parent phase of P4/nmm symmetry, two distortion modes are found dominant. They correspond to MnO(6) and WO(6) octahedron tilt modes, often found in many simple perovskites. While in the latter these common tilting instabilities yield non-polar phases, in NaLaMnWO(6) the additional presence of the A-A' cation ordering is sufficient to make these rigid unit modes a source of the ferroelectricity. Through a trilinear coupling with the two unstable tilting modes, a polar distortion is induced, although the system has no intrinsic polar instability. The calculated electric polarization resulting from this polar distortion is as large as ∼16 µC cm(-2). Despite its secondary character, this polarization is coupled with the dominant tilting modes and its switching is bound to produce the switching of one of two tilts, enhancing in this way a possible interaction with the magnetic ordering. The transformation of common non-polar purely steric instabilities into sources of ferroelectricity through a controlled modification of the parent structure, as done here by the cation ordering, is a phenomenon to be further explored.

9.
J Chem Phys ; 134(17): 174505, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21548697

RESUMEN

The electronic structure of Croconic Acid in the condensed phase has been studied by comparing core level and valence band x-ray photoelectron spectroscopy experiments and first principles density functional theory calculations using the Heyd-Scuseria-Ernzerhof screened hybrid functional and the GW approximation. By exploring the photoemission spectra for different deposition thicknesses, we show how the formation of the hydrogen bond network modifies the O 1s core level lineshape. Moreover, the valence band can be explained only if the intermolecular interactions are taken into account in the theoretical approach.

10.
Nat Mater ; 9(9): 741-4, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20657589

RESUMEN

Kohn-Sham density functional theory is the workhorse computational method in materials and surface science. Unfortunately, most semilocal density functionals predict surfaces to be more stable than they are experimentally. Naively, we would expect that consequently adsorption energies on surfaces are too small as well, but the contrary is often found: chemisorption energies are usually overestimated. Modifying the functional improves either the adsorption energy or the surface energy but always worsens the other aspect. This suggests that semilocal density functionals possess a fundamental flaw that is difficult to cure, and alternative methods are urgently needed. Here we show that a computationally fairly efficient many-electron approach, the random phase approximation to the correlation energy, resolves this dilemma and yields at the same time excellent lattice constants, surface energies and adsorption energies for carbon monoxide and benzene on transition-metal surfaces.

11.
Phys Chem Chem Phys ; 12(20): 5405-16, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20445921

RESUMEN

We present a detailed study of the structural, electronic, magnetic and ferroelectric properties of prototypical proper and improper multiferroic (MF) systems such as BiFeO(3) and orthorhombic HoMnO(3), respectively, within density functional theory (DFT) and using the Heyd-Scuseria-Ernzerhof hybrid functional (HSE). By comparing our results with available experimental data as well as with state-of-the-art GW calculations, we show that the HSE formalism is able to account well for the relevant properties of these compounds and it emerges as an accurate tool for predictive first-principles investigations on multiferroic systems. We show that effects beyond local and semilocal DFT approaches (as provided by HSE) are necessary for a realistic description of MFs. For the electric polarization, a decrease is found for MFs with magnetically-induced ferroelectricity, such as HoMnO(3), where the calculated polarization changes from approximately 6 muC cm(-2) using Perdew-Burke-Ernzerhof (PBE) to approximately 2 muC cm(-2) using HSE. However, for proper MFs, such as BiFeO(3), the polarization slightly increases upon introduction of exact exchange. Our findings therefore suggest that a general trend for the HSE correction to bare density functional cannot be extracted; rather, a specific investigation has to be carried out on each compound.

12.
J Phys Condens Matter ; 20(6): 064201, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-21693863

RESUMEN

We present an overview of the description of structural, thermochemical, and electronic properties of extended systems using several well known hybrid Hartree-Fock/density-functional-theory functionals (PBE0, HSE03, and B3LYP). In addition we address a few aspects of the evaluation of the Hartree-Fock exchange interactions in reciprocal space, relevant to all methods that employ a plane wave basis set and periodic boundary conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA