Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 22(3): 516-522, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32974990

RESUMEN

Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As it is an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of IDO1 inhibitors with various mechanisms of inhibition is of great interest. Comparison of an apo-form-binding IDO1 inhibitor (GSK5628) to the heme-coordinating compound, epacadostat (Incyte), allows us to explore the details of the apo-binding inhibition of IDO1. Herein, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1), whereas epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, previously undescribed for other known IDO1 inhibitors. Detailed characterization of this apo-binding mechanism for IDO1 inhibition might help design superior inhibitors or could confer a unique competitive advantage over other IDO1 inhibitors vis-à-vis specificity and pharmacokinetic parameters.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Conformación Molecular
2.
Nat Biotechnol ; 38(3): 303-308, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31959954

RESUMEN

Monitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis. In addition, we devised blood-CETSA and blood-TPP and applied it to measure target and off-target engagement of panobinostat and the BET family inhibitor JQ1 directly in whole blood. Blood-TPP analysis of panobinostat confirmed its binding to known targets and also revealed thermal stabilization of the zinc-finger transcription factor ZNF512. These methods will help to elucidate the mechanisms of drug action in vivo.


Asunto(s)
Sangre/metabolismo , Proteoma/química , Proteoma/metabolismo , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Azepinas/administración & dosificación , Azepinas/farmacología , Células Hep G2 , Humanos , Riñón/química , Riñón/metabolismo , Hígado/química , Hígado/metabolismo , Pulmón/química , Pulmón/metabolismo , Masculino , Espectrometría de Masas , Ratones , Especificidad de Órganos , Panobinostat/administración & dosificación , Panobinostat/farmacología , Estabilidad Proteica , Ratas , Bibliotecas de Moléculas Pequeñas/farmacología , Bazo/química , Bazo/metabolismo , Testículo/química , Testículo/metabolismo , Termodinámica , Triazoles/administración & dosificación , Triazoles/farmacología , Vemurafenib/administración & dosificación , Vemurafenib/farmacología
3.
ACS Med Chem Lett ; 10(5): 780-785, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31097999

RESUMEN

The serine/threonine protein kinase TBK1 (Tank-binding Kinase-1) is a noncanonical member of the IkB kinase (IKK) family. This kinase regulates signaling pathways in innate immunity, oncogenesis, energy homeostasis, autophagy, and neuroinflammation. Herein, we report the discovery and characterization of a novel potent and highly selective TBK1 inhibitor, GSK8612. In cellular assays, this small molecule inhibited toll-like receptor (TLR)3-induced interferon regulatory factor (IRF)3 phosphorylation in Ramos cells and type I interferon (IFN) secretion in primary human mononuclear cells. In THP1 cells, GSK8612 was able to inhibit secretion of interferon beta (IFNß) in response to dsDNA and cGAMP, the natural ligand for STING. GSK8612 is a TBK1 small molecule inhibitor displaying an excellent selectivity profile and therefore represents an ideal probe to further dissect the biology of TBK1 in models of immunity, neuroinflammation, obesity, or cancer.

4.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551266

RESUMEN

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteoma/análisis , Proteómica/métodos , Azepinas/química , Azepinas/metabolismo , Azepinas/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Estradiol/farmacología , Humanos , Marcaje Isotópico , Células Jurkat , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Espectrometría de Masas en Tándem , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA