Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Rev Cell Mol Biol ; 332: 233-258, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28526134

RESUMEN

The homeostasis of eukaryotic cells relies on efficient mitochondrial function. The control of mitochondrial quality is framed by the combination of distinct but interdependent mechanisms spanning biogenesis, regulation of dynamic network, and finely tuned degradation either through ubiquitin-proteasome system or autophagy (mitophagy). There is continuous evolution on the pathways orchestrating the mitochondrial response to stress signals and the organelle adaptation to quality control during acute and subtle dysfunctions. Notably, it remains indeed ill-defined whether active mitophagy leads to cell survival or death by defective mitochondrial degradation. Above all, uncharted is whether and how pharmacologically tackle these mechanisms may lead to conceive novel therapeutic strategies for treating conditions associated with the defective mitochondria. Here, we attempt to provide a chronological and comprehensive overview of the determining discoveries, which have led to the current knowledge of mitophagy.


Asunto(s)
Mitofagia , Biología Molecular , Animales , Humanos , Modelos Biológicos , Ubiquitina-Proteína Ligasas/metabolismo
2.
AJNR Am J Neuroradiol ; 36(7): 1259-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25792533

RESUMEN

BACKGROUND AND PURPOSE: Brain white matter is frequently affected in mitochondrial diseases; optic atrophy gene 1-autosomal dominant optic atrophy and Leber hereditary optic neuropathy are the most frequent mitochondrial monosymptomatic optic neuropathies. In this observational study, brain white matter microstructure was characterized by DTI in patients with optic atrophy gene 1-autosomal dominant optic atrophy and Leber hereditary optic neuropathy, in relation to clinical and genetic features. MATERIALS AND METHODS: Nineteen patients with optic atrophy gene 1-autosomal dominant optic atrophy and 17 with Leber hereditary optic neuropathy older than 18 years of age, all genetically diagnosed, and 19 healthy volunteers underwent DTI by using a 1.5T MR imaging scanner and neurologic and ophthalmologic assessments. Brain white matter DTI metrics were calculated for all participants, and, in patients, their correlations with genetics and clinical findings were calculated. RESULTS: Compared with controls, patients with optic atrophy gene 1-autosomal dominant optic atrophy had an increased mean diffusivity in 29.2% of voxels analyzed within major white matter tracts distributed throughout the brain, while fractional anisotropy was reduced in 30.3% of voxels. For patients with Leber hereditary optic neuropathy, the proportion of altered voxels was only 0.5% and 5.5%, respectively, of which half was found within the optic radiation and 3.5%, in the smaller acoustic radiation. In almost all regions, fractional anisotropy diminished with age in patients with optic atrophy gene 1-autosomal dominant optic atrophy and correlated with average retinal nerve fiber layer thickness in several areas. Mean diffusivity increased in those with a missense mutation. Patients with Leber hereditary optic neuropathy taking idebenone had slightly milder changes. CONCLUSIONS: Patients with Leber hereditary optic neuropathy had preferential involvement of the optic and acoustic radiations, consistent with trans-synaptic degeneration, whereas patients with optic atrophy gene 1-autosomal dominant optic atrophy presented with widespread involvement suggestive of a multisystemic, possibly a congenital/developmental, disorder. White matter changes in Leber hereditary optic neuropathy and optic atrophy gene 1-autosomal dominant optic atrophy may be exploitable as biomarkers.


Asunto(s)
Imagen de Difusión Tensora , Atrofia Óptica Autosómica Dominante/patología , Atrofia Óptica Hereditaria de Leber/patología , Sustancia Blanca/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Curr Mol Med ; 14(8): 985-992, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25323873

RESUMEN

Over two decades have elapsed since the first mtDNA point mutation was associated with Leber's hereditary optic neuropathy (LHON) in 1988. We have subsequently witnessed a substantial understanding of the molecular basis of hereditary optic neuropathies, as well as of their clinical features and pathogenic mechanisms. It became clear that the large majority of genetic optic neuropathies have a primary or an indirect involvement of mitochondrial functions, justifying the definition of "mitochondrial optic neuropathies". Despite this progress many unsolved features remain to be understood, such as incomplete penetrance and variable clinical expressivity in LHON and dominant optic atrophy (DOA), gender prevalence in LHON, and complex gene/environment interactions in both LHON and DOA. The most recent advancement in our understanding of the molecular basis of mitochondrial optic neuropathies is the topic of this review. In particular, we analyze the role that mitochondrial biogenesis may play in the compensatory mechanisms that underlie incomplete penetrance and clinical expressivity, a scenario relevant for the possible design of future therapeutic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA