Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
iScience ; 27(9): 110620, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39252972

RESUMEN

Colorectal adenomas (CRAs) are potential precursor lesions to adenocarcinomas, currently classified by morphological features. We aimed to establish a molecular feature-based risk allocation framework toward improved patient stratification. Deep visual proteomics (DVP) is an approach that combines image-based artificial intelligence with automated microdissection and ultra-high sensitive mass spectrometry. Here, we used DVP on formalin-fixed, paraffin-embedded (FFPE) CRA tissues from nine male patients, immunohistologically stained for caudal-type homeobox 2 (CDX2), a protein implicated in colorectal cancer, enabling the characterization of cellular heterogeneity within distinct tissue regions and across patients. DVP identified DMBT1, MARCKS, and CD99 as protein markers linked to recurrence, suggesting their potential for risk assessment. It also detected a metabolic shift to anaerobic glycolysis in cells with high CDX2 expression. Our findings underscore the potential of spatial proteomics to refine early stage detection and contribute to personalized patient management strategies and provided novel insights into metabolic reprogramming.

2.
J Proteomics ; 305: 105246, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964537

RESUMEN

The 2023 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers Meeting was held from January 15th to January 20th, 2023, in Congressi Stefano Franscin at Monte Verità in Ticino, Switzerland. The participants were scientists and developers working in computational mass spectrometry (MS), metabolomics, and proteomics. The 5-day program was split between introductory keynote lectures and parallel hackathon sessions focusing on "Artificial Intelligence in proteomics" to stimulate future directions in the MS-driven omics areas. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts and actively contribute to highly relevant research projects. We successfully produced several new tools applicable to the proteomics community by improving data analysis and facilitating future research.


Asunto(s)
Espectrometría de Masas , Proteómica , Proteómica/métodos , Humanos , Espectrometría de Masas/métodos , Biología Computacional/métodos , Metabolómica/métodos , Inteligencia Artificial
3.
Nat Commun ; 15(1): 2168, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461149

RESUMEN

In common with other omics technologies, mass spectrometry (MS)-based proteomics produces ever-increasing amounts of raw data, making efficient analysis a principal challenge. A plethora of different computational tools can process the MS data to derive peptide and protein identification and quantification. However, during the last years there has been dramatic progress in computer science, including collaboration tools that have transformed research and industry. To leverage these advances, we develop AlphaPept, a Python-based open-source framework for efficient processing of large high-resolution MS data sets. Numba for just-in-time compilation on CPU and GPU achieves hundred-fold speed improvements. AlphaPept uses the Python scientific stack of highly optimized packages, reducing the code base to domain-specific tasks while accessing the latest advances. We provide an easy on-ramp for community contributions through the concept of literate programming, implemented in Jupyter Notebooks. Large datasets can rapidly be processed as shown by the analysis of hundreds of proteomes in minutes per file, many-fold faster than acquisition. AlphaPept can be used to build automated processing pipelines with web-serving functionality and compatibility with downstream analysis tools. It provides easy access via one-click installation, a modular Python library for advanced users, and via an open GitHub repository for developers.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma
4.
Digit Health ; 9: 20552076231211552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936956

RESUMEN

Background: A major challenge in healthcare is the interpretation of the constantly increasing amount of clinical data of interest to inpatients for diagnosis and therapy. It is vital to accurately structure and represent data from different sources to help clinicians make informed decisions. Objective: We evaluated the usability of our tool 'Triptychon' - a three-part visualisation dashboard of essential patients' medical data provided by a direct overview of their hospitalisation information, laboratory, and vital parameters over time. Methods: The study followed a cohort of 20 participants using the mixed-methods approach, including interviews and the usability questionnaires, Health Information Technology Usability Evaluation Scale (Health-ITUES), and User Experience Questionnaire (UEQ). The participant's interactions with the dashboard were also observed. A thematic analysis approach was applied to analyse qualitative data and the quantitative data's task completion time and success rates. Results: The usability evaluation of the visualisation dashboard revealed issues relating to the terminology used in the user interface and colour coding in its left and middle panels. The Health-ITUES score was 3.72 (standard deviation (SD) = 1.0), and the UEQ score was 1.6 (SD = 0.74). The study demonstrated improvements in intuitive dashboard use and overall satisfaction with using the dashboard daily. Conclusion: The Triptychon dashboard is a promising new tool for medical data presentation. We identified design and layout issues of the dashboard for improving its usability in routine clinical practice. According to users' feedback, the three panels on the dashboard provided a holistic view of a patient's hospital stay.

5.
Nature ; 624(7990): 192-200, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968396

RESUMEN

Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome is far from complete, and assessing the reliability of reported interactions is challenging. Here we develop a sensitive high-throughput method using highly reproducible affinity enrichment coupled to mass spectrometry combined with a quantitative two-dimensional analysis strategy to comprehensively map the interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well format enabled replicate analysis of the endogenous GFP-tagged library covering the entire expressed yeast proteome1. The 4,159 pull-downs generated a highly structured network of 3,927 proteins connected by 31,004 interactions, doubling the number of proteins and tripling the number of reliable interactions compared with existing interactome maps2. This includes very-low-abundance epigenetic complexes, organellar membrane complexes and non-taggable complexes inferred by abundance correlation. This nearly saturated interactome reveals that the vast majority of yeast proteins are highly connected, with an average of 16 interactors. Similar to social networks between humans, the average shortest distance between proteins is 4.2 interactions. AlphaFold-Multimer provided novel insights into the functional roles of previously uncharacterized proteins in complexes. Our web portal ( www.yeast-interactome.org ) enables extensive exploration of the interactome dataset.


Asunto(s)
Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espectrometría de Masas , Mapeo de Interacción de Proteínas/métodos , Proteoma/química , Proteoma/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Epigénesis Genética , Bases de Datos Factuales
6.
Nat Methods ; 20(10): 1530-1536, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783884

RESUMEN

Single-cell proteomics by mass spectrometry is emerging as a powerful and unbiased method for the characterization of biological heterogeneity. So far, it has been limited to cultured cells, whereas an expansion of the method to complex tissues would greatly enhance biological insights. Here we describe single-cell Deep Visual Proteomics (scDVP), a technology that integrates high-content imaging, laser microdissection and multiplexed mass spectrometry. scDVP resolves the context-dependent, spatial proteome of murine hepatocytes at a current depth of 1,700 proteins from a cell slice. Half of the proteome was differentially regulated in a spatial manner, with protein levels changing dramatically in proximity to the central vein. We applied machine learning to proteome classes and images, which subsequently inferred the spatial proteome from imaging data alone. scDVP is applicable to healthy and diseased tissues and complements other spatial proteomics and spatial omics technologies.


Asunto(s)
Proteoma , Proteómica , Animales , Ratones , Proteoma/análisis , Espectrometría de Masas/métodos , Proteómica/métodos , Captura por Microdisección con Láser/métodos
7.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527012

RESUMEN

SUMMARY: The widespread application of mass spectrometry (MS)-based proteomics in biomedical research increasingly requires robust, transparent, and streamlined solutions to extract statistically reliable insights. We have designed and implemented AlphaPeptStats, an inclusive Python package with currently with broad functionalities for normalization, imputation, visualization, and statistical analysis of label-free proteomics data. It modularly builds on the established stack of Python scientific libraries and is accompanied by a rigorous testing framework with 98% test coverage. It imports the output of a range of popular search engines. Data can be filtered and normalized according to user specifications. At its heart, AlphaPeptStats provides a wide range of robust statistical algorithms such as t-tests, analysis of variance, principal component analysis, hierarchical clustering, and multiple covariate analysis-all in an automatable manner. Data visualization capabilities include heat maps, volcano plots, and scatter plots in publication-ready format. AlphaPeptStats advances proteomic research through its robust tools that enable researchers to manually or automatically explore complex datasets to identify interesting patterns and outliers. AVAILABILITY AND IMPLEMENTATION: AlphaPeptStats is implemented in Python and part of the AlphaPept framework. It is released under a permissive Apache license. The source code and one-click installers are freely available and on GitHub at https://github.com/MannLabs/alphapeptstats.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Espectrometría de Masas/métodos , Algoritmos , Motor de Búsqueda
9.
Nature ; 617(7962): 711-716, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37225882

RESUMEN

Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.


Asunto(s)
Antígenos CD20 , Células , ADN , Microscopía Fluorescente , Disciplinas de las Ciencias Biológicas/instrumentación , Disciplinas de las Ciencias Biológicas/métodos , Disciplinas de las Ciencias Biológicas/normas , Inmunoterapia , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Código de Barras del ADN Taxonómico , ADN/análisis , ADN/química , Antígenos CD20/análisis , Antígenos CD20/química , Células/efectos de los fármacos , Células/metabolismo
10.
J Proteome Res ; 22(2): 359-367, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36426751

RESUMEN

Biomarkers are of central importance for assessing the health state and to guide medical interventions and their efficacy; still, they are lacking for most diseases. Mass spectrometry (MS)-based proteomics is a powerful technology for biomarker discovery but requires sophisticated bioinformatics to identify robust patterns. Machine learning (ML) has become a promising tool for this purpose. However, it is sometimes applied in an opaque manner and generally requires specialized knowledge. To enable easy access to ML for biomarker discovery without any programming or bioinformatics skills, we developed "OmicLearn" (http://OmicLearn.org), an open-source browser-based ML tool using the latest advances in the Python ML ecosystem. Data matrices from omics experiments are easily uploaded to an online or a locally installed web server. OmicLearn enables rapid exploration of the suitability of various ML algorithms for the experimental data sets. It fosters open science via transparent assessment of state-of-the-art algorithms in a standardized format for proteomics and other omics sciences.


Asunto(s)
Ecosistema , Proteómica , Proteómica/métodos , Biomarcadores/análisis , Algoritmos , Aprendizaje Automático
12.
Nat Med ; 28(6): 1277-1287, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654907

RESUMEN

Alcohol-related liver disease (ALD) is a major cause of liver-related death worldwide, yet understanding of the three key pathological features of the disease-fibrosis, inflammation and steatosis-remains incomplete. Here, we present a paired liver-plasma proteomics approach to infer molecular pathophysiology and to explore the diagnostic and prognostic capability of plasma proteomics in 596 individuals (137 controls and 459 individuals with ALD), 360 of whom had biopsy-based histological assessment. We analyzed all plasma samples and 79 liver biopsies using a mass spectrometry (MS)-based proteomics workflow with short gradient times and an enhanced, data-independent acquisition scheme in only 3 weeks of measurement time. In plasma and liver biopsy tissues, metabolic functions were downregulated whereas fibrosis-associated signaling and immune responses were upregulated. Machine learning models identified proteomics biomarker panels that detected significant fibrosis (receiver operating characteristic-area under the curve (ROC-AUC), 0.92, accuracy, 0.82) and mild inflammation (ROC-AUC, 0.87, accuracy, 0.79) more accurately than existing clinical assays (DeLong's test, P < 0.05). These biomarker panels were found to be accurate in prediction of future liver-related events and all-cause mortality, with a Harrell's C-index of 0.90 and 0.79, respectively. An independent validation cohort reproduced the diagnostic model performance, laying the foundation for routine MS-based liver disease testing.


Asunto(s)
Hepatopatías , Proteómica , Biomarcadores/metabolismo , Biopsia , Humanos , Inflamación/patología , Hígado/metabolismo , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Hepatopatías/metabolismo
13.
PLoS Biol ; 20(5): e3001636, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576205

RESUMEN

The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Humanos , Espectrometría de Masas/métodos , Fosforilación , Proteómica/métodos
14.
Nat Biotechnol ; 40(5): 692-702, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102292

RESUMEN

Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.


Asunto(s)
Bases del Conocimiento , Medicina de Precisión/métodos , Proteómica , Algoritmos , Toma de Decisiones Asistida por Computador , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas , Medicina de Precisión/normas , Proteómica/normas , Proteómica/estadística & datos numéricos
15.
Bioinformatics ; 38(3): 849-852, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34586352

RESUMEN

SUMMARY: Integrating experimental information across proteomic datasets with the wealth of publicly available sequence annotations is a crucial part in many proteomic studies that currently lacks an automated analysis platform. Here, we present AlphaMap, a Python package that facilitates the visual exploration of peptide-level proteomics data. Identified peptides and post-translational modifications in proteomic datasets are mapped to their corresponding protein sequence and visualized together with prior knowledge from UniProt and with expected proteolytic cleavage sites. The functionality of AlphaMap can be accessed via an intuitive graphical user interface or-more flexibly-as a Python package that allows its integration into common analysis workflows for data visualization. AlphaMap produces publication-quality illustrations and can easily be customized to address a given research question. AVAILABILITY AND IMPLEMENTATION: AlphaMap is implemented in Python and released under an Apache license. The source code and one-click installers are freely available at https://github.com/MannLabs/alphamap. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteómica , Programas Informáticos , Péptidos , Secuencia de Aminoácidos , Péptido Hidrolasas
16.
Mol Cell Proteomics ; 20: 100149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34543758

RESUMEN

High-resolution MS-based proteomics generates large amounts of data, even in the standard LC-tandem MS configuration. Adding an ion mobility dimension vastly increases the acquired data volume, challenging both analytical processing pipelines and especially data exploration by scientists. This has necessitated data aggregation, effectively discarding much of the information present in these rich datasets. Taking trapped ion mobility spectrometry (TIMS) on a quadrupole TOF (Q-TOF) platform as an example, we developed an efficient indexing scheme that represents all data points as detector arrival times on scales of minutes (LC), milliseconds (TIMS), and microseconds (TOF). In our open-source AlphaTims package, data are indexed, accessed, and visualized by a combination of tools of the scientific Python ecosystem. We interpret unprocessed data as a sparse four-dimensional matrix and use just-in-time compilation to machine code with Numba, accelerating our computational procedures by several orders of magnitude while keeping to familiar indexing and slicing notations. For samples with more than six billion detector events, a modern laptop can load and index raw data in about a minute. Loading is even faster when AlphaTims has already saved indexed data in an HDF5 file, a portable scientific standard used in extremely large-scale data acquisition. Subsequently, data accession along any dimension and interactive visualization happens in milliseconds. We have found AlphaTims to be a key enabling tool to explore high-dimensional LC-TIMS-Q-TOF data and have made it freely available as an open-source Python package with a stand-alone graphical user interface at https://github.com/MannLabs/alphatims or as part of the AlphaPept 'ecosystem'.


Asunto(s)
Programas Informáticos , Cromatografía Liquida , Células HeLa , Humanos , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Péptidos
17.
Cell Syst ; 12(8): 759-770, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34411543

RESUMEN

There is an avalanche of biomedical data generation and a parallel expansion in computational capabilities to analyze and make sense of these data. Starting with genome sequencing and widely employed deep sequencing technologies, these trends have now taken hold in all omics disciplines and increasingly call for multi-omics integration as well as data interpretation by artificial intelligence technologies. Here, we focus on mass spectrometry (MS)-based proteomics and describe how machine learning and, in particular, deep learning now predicts experimental peptide measurements from amino acid sequences alone. This will dramatically improve the quality and reliability of analytical workflows because experimental results should agree with predictions in a multi-dimensional data landscape. Machine learning has also become central to biomarker discovery from proteomics data, which now starts to outperform existing best-in-class assays. Finally, we discuss model transparency and explainability and data privacy that are required to deploy MS-based biomarkers in clinical settings.


Asunto(s)
Inteligencia Artificial , Proteómica , Biomarcadores/análisis , Espectrometría de Masas/métodos , Proteómica/métodos , Reproducibilidad de los Resultados
18.
EMBO Mol Med ; 13(8): e14167, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34232570

RESUMEN

A deeper understanding of COVID-19 on human molecular pathophysiology is urgently needed as a foundation for the discovery of new biomarkers and therapeutic targets. Here we applied mass spectrometry (MS)-based proteomics to measure serum proteomes of COVID-19 patients and symptomatic, but PCR-negative controls, in a time-resolved manner. In 262 controls and 458 longitudinal samples of 31 patients, hospitalized for COVID-19, a remarkable 26% of proteins changed significantly. Bioinformatics analyses revealed co-regulated groups and shared biological functions. Proteins of the innate immune system such as CRP, SAA1, CD14, LBP, and LGALS3BP decreased early in the time course. Regulators of coagulation (APOH, FN1, HRG, KNG1, PLG) and lipid homeostasis (APOA1, APOC1, APOC2, APOC3, PON1) increased over the course of the disease. A global correlation map provides a system-wide functional association between proteins, biological processes, and clinical chemistry parameters. Importantly, five SARS-CoV-2 immunoassays against antibodies revealed excellent correlations with an extensive range of immunoglobulin regions, which were quantified by MS-based proteomics. The high-resolution profile of all immunoglobulin regions showed individual-specific differences and commonalities of potential pathophysiological relevance.


Asunto(s)
COVID-19 , Proteoma , Anticuerpos Antivirales , Arildialquilfosfatasa , Humanos , Proteómica , SARS-CoV-2 , Seroconversión
19.
Pract Lab Med ; 26: e00236, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34041343

RESUMEN

BACKGROUND: Serum biomarker S100B has been explored for its potential benefit to improve clinical decision-making in the management of patients suffering from traumatic brain injury (TBI), especially as a pre-head computed-tomography screening test for patients with mild TBI. Although being already included into some guidelines, its implementation into standard care is still lacking. This might be explained by a turnaround time (TAT) too long for serum S100B to be used in clinical decision-making in emergency settings. METHODS: S100B concentrations were determined in 136 matching pairs of serum and lithium heparin blood samples. The concordance of the test results was assessed by linear regression, Passing Pablok regression and Bland-Altman analysis. Bias and within- and between-run imprecision were determined by a 5 × 4 model using pooled patient samples. CT scans were performed as clinically indicated. RESULTS: Overall, S100B levels between both blood constituents correlated very well. The suitability of S100B testing from plasma was verified according to ISO15189 requirements. Using a cut-off of 0.105 ng/ml, a sensitivity and negative predictive value of 100% were obtained for identifying patients with pathologic CT scans. Importantly, plasma-based testing reduced the TAT to 26 min allowing for quicker clinical decision-making. The clinical utility of integrating S100B in TBI management is highlighted by two case reports. CONCLUSIONS: Plasma-based S100B testing compares favorably with serum-based testing, substantially reducing processing times as the prerequisite for integrating S100B level into management of TBI patients. The proposed new clinical decision algorithm for TBI management needs to be validated in further prospective large-scale studies.

20.
Nat Commun ; 12(1): 919, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568673

RESUMEN

Single-molecule localization microscopy (SMLM) enabling the investigation of individual proteins on molecular scales has revolutionized how biological processes are analysed in cells. However, a major limitation of imaging techniques reaching single-protein resolution is the incomplete and often unknown labeling and detection efficiency of the utilized molecular probes. As a result, fundamental processes such as complex formation of distinct molecular species cannot be reliably quantified. Here, we establish a super-resolution microscopy framework, called quantitative single-molecule colocalization analysis (qSMCL), which permits the identification of absolute molecular quantities and thus the investigation of molecular-scale processes inside cells. The method combines multiplexed single-protein resolution imaging, automated cluster detection, in silico data simulation procedures, and widely applicable experimental controls to determine absolute fractions and spatial coordinates of interacting species on a true molecular level, even in highly crowded subcellular structures. The first application of this framework allowed the identification of a long-sought ternary adhesion complex-consisting of talin, kindlin and active ß1-integrin-that specifically forms in cell-matrix adhesion sites. Together, the experiments demonstrate that qSMCL allows an absolute quantification of multiplexed SMLM data and thus should be useful for investigating molecular mechanisms underlying numerous processes in cells.


Asunto(s)
Proteínas del Citoesqueleto/química , Integrina beta1/química , Proteínas Musculares/química , Imagen Individual de Molécula/métodos , Talina/química , Animales , Adhesión Celular , Línea Celular , Humanos , Ratones , Imagen Individual de Molécula/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA