Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(27): 17788-94, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27067640

RESUMEN

We describe a method for the accurate determination of deuteron quadrupole coupling constants χD for N-D bonds in triethylammonium-based protic ionic liquids (PILs). This approach was first introduced by Wendt and Farrar for O-D bonds in molecular liquids, and is based on the linear relationship between the deuteron quadrupole coupling constants χD, and the proton chemical shifts δ(1)H, as obtained from DFT calculated properties in differently sized clusters of the compounds. Thus the measurement of δ(1)H provides an accurate estimate for χD, which can then be used for deriving reorientational correlation-times τND, by means of NMR deuteron quadrupole relaxation time measurements. The method is applied to pure PILs including differently strong interacting anions. The obtained χD values vary between 152 and 204 kHz, depending on the cation-anion interaction strength, intensified by H-bonding. We find that considering dispersion corrections in the DFT-calculations leads to only slightly decreasing χD values. The determined reorientational correlation times indicate that the extreme narrowing condition is fulfilled for these PILs. The τc values along with the measured viscosities provide an estimate for the volume/size of the clusters present in solution. In addition, the correlation times τc, and the H-bonded aggregates were also characterized by molecular dynamics (MD) simulations.

2.
Chemphyschem ; 15(14): 3040-8, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25055972

RESUMEN

The validity of Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations for methanol in the physical environment of the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is studied by means of nuclear magnetic resonance (NMR) relaxation time experiments, viscosity measurements and molecular dynamics (MD) simulations. The reorientational correlation times of the hydroxyl groups of pure methanol and of methanol in the IL/methanol mixtures were determined. For that purpose an approach for estimating NMR deuteron quadrupole coupling constants, presented by Wendt and Farrar (Mol. Phys. 1998, 95, 1077-1081), was confirmed. The self-diffusion coefficients of methanol were taken from the MD simulations. The viscosities of all systems were then measured and the SE and SED relations validated. For pure methanol both relations are valid, whereas they become increasingly invalid with increasing IL concentration, as indicated by effective volumes and radii that are too low. The deviation from the SE and SED relations could be related to dynamical heterogeneities described by the non-Gaussian parameter α(t) obtained from MD simulations. For pure methanol, α(t) is close to zero in accord with the validity of both relations. With increasing IL concentration the dynamical heterogeneities of methanol increase strongly. The times t* at the maximum of α(t) increase linearly with the relative number of methanol monomers in the mixtures. Thus, the dynamical heterogeneities are largest for single methanol molecules fully embedded in the IL environment. In their own environment methanol molecules are highly mobile, whereas in the IL-rich region the mobility is strongly reduced leading to the non-validity of SE and SED relations.

3.
Chemphyschem ; 15(2): 265-70, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24403189

RESUMEN

The change from "quasi" contact to "quasi" solvent-separated ion-pair configuration in the local environment of a probe molecule in ionic liquids depends on the varying interaction strength of the chosen anions. The ion speciation in these Coulomb fluids could be shown by combining infrared spectroscopy, density functional theory calculations, and natural bond orbital analysis using a low-self-clustering probe molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA