Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 26(6): 552-61, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9616191

RESUMEN

Both ritonavir and indinavir were readily metabolized by human intestinal microsomes. Comparison of the patterns of metabolites in incubations with enterocyte microsomes and expressed cytochrome P450 (CYP) isozymes and immunoinhibition and chemical inhibition studies showed the essential role of the CYP3A subfamily in the metabolism of both protease inhibitors by the small intestine. Ritonavir was similarly biotransformed by microsomes containing expressed CYP3A4 or CYP3A5 isozymes (KM = 0.05-0.07 microM, Vmax = 1-1.4 nmol/min/nmol CYP). In contrast, both the patterns of metabolites and the enzyme kinetic parameters for the metabolism of indinavir by expressed CYP3A5 (KM = 0.21 microM, Vmax = 0.24 nmol/min/nmol CYP) and CYP3A4 (KM = 0.04 microM, Vmax = 0.68 nmol/min/nmol CYP) were different. The biotransformation of both indinavir and ritonavir in human enterocyte microsomes was characterized by very low KM values (0.2-0.4 microM for indinavir and <0.1 microM for ritonavir). The Vmax for indinavir metabolism was greater in enterocyte (163 +/- 35 pmol/min/mg protein) than in liver (68 +/- 44 pmol/min/mg protein) microsomes. The metabolism of ritonavir in liver and enterocyte microsomes was associated with inactivation of CYP3A. The initial Vmax for ritonavir metabolism by enterocyte microsomes was 89 +/- 59 pmol/min/mg protein. The apparent inactivation rate constants for intestinal CYP3A and expressed CYP3A4 were 0.078 and 0.135 min-1, respectively. Metabolic inactivation of CYP3A by ritonavir explains the improved bioavailability and pharmacokinetics of ritonavir and the sustained elevation of blood levels of other, concomitantly administered, substrates of CYP3A.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Sistema Enzimático del Citocromo P-450/fisiología , Inhibidores de la Proteasa del VIH/farmacocinética , Indinavir/farmacocinética , Mucosa Intestinal/metabolismo , Microsomas/metabolismo , Oxigenasas de Función Mixta/fisiología , Ritonavir/farmacocinética , Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Humanos , Cetoconazol/farmacología , Cinética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Ritonavir/farmacología
2.
Clin Pharmacol Ther ; 61(5): 554-62, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9164417

RESUMEN

Biotransformation of rifabutin, an antibiotic used for treatment of tuberculosis in patients infected with the human immunodeficiency virus (HIV), and its interactions with some macrolide and antifungal agents were studied in human intestinal and liver microsomes. Both liver and enterocyte microsomes metabolized rifabutin to 25-O-deacetylrifabutin, 27-O-demethylrifabutin, and 20-, 31-, and 32-hydroxyrifabutin. The same products (except 25-O-deacetylrifabutin) were formed by microsomes from lymphoblastoid cells that contained expressed CYP3A4. The apparent Michaelis-Menten constant (Km); approximately 10 to 12 mumol/L) and maximal velocity (Vmax; approximately 100 pmol/min/mg of protein) values for CYP-mediated metabolism were similar in liver and enterocyte microsomes. Deacetylation of rifabutin (Km approximately 16 to 20 mumol/L and Vmax approximately 50 to 100 pmol/min/mg of protein) was catalyzed by microsomal cholinesterase. Clarithromycin, ketoconazole, and fluconazole inhibited CYP-mediated metabolism of rifabutin in enterocyte microsomes equally or more potently than in liver microsomes but had no effect on cholinesterase activity. Azithromycin did not inhibit in vitro metabolism of rifabutin. This study provides evidence that CYP3A4 and cholinesterase are major enzymes that biotransform rifabutin in humans and that intestinal CYP3A4 contributes significantly to rifabutin presystemic first-pass metabolism and drug interactions with macrolide and antifungal agents.


Asunto(s)
Antibacterianos/farmacocinética , Antibióticos Antituberculosos/farmacocinética , Antifúngicos/farmacocinética , Mucosa Intestinal/metabolismo , Microsomas Hepáticos/metabolismo , Rifabutina/farmacocinética , Acetilación , Antibacterianos/administración & dosificación , Antibacterianos/sangre , Antibacterianos/metabolismo , Antibióticos Antituberculosos/administración & dosificación , Antibióticos Antituberculosos/sangre , Antibióticos Antituberculosos/metabolismo , Antifúngicos/administración & dosificación , Antifúngicos/sangre , Antifúngicos/metabolismo , Separación Celular , Colinesterasas/metabolismo , Cromatografía Líquida de Alta Presión , Neoplasias del Colon/cirugía , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Humanos , Mucosa Intestinal/citología , Macrólidos , Metilación , Oxigenasas de Función Mixta/metabolismo , Rifabutina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA