Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacogenet Genomics ; 31(5): 116-123, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096894

RESUMEN

OBJECTIVES: Letrozole is a nonsteroidal aromatase inhibitor used to treat hormone-receptor-positive breast cancer. Variability in letrozole efficacy and toxicity may be partially attributable to variable systemic drug exposure, which may be influenced by germline variants in the enzymes responsible for letrozole metabolism, including cytochrome P450 2A6 (CYP2A6). The objective of this genome-wide association study (GWAS) was to identify polymorphisms associated with steady-state letrozole concentrations. METHODS: The Exemestane and Letrozole Pharmacogenetics (ELPh) Study randomized postmenopausal patients with hormone-receptor-positive nonmetastatic breast cancer to letrozole or exemestane treatment. Germline DNA was collected pretreatment and blood samples were collected after 1 or 3 months of treatment to measure steady-state letrozole (and exemestane) plasma concentrations via HPLC/MS. Genome-wide genotyping was conducted on the Infinium Global Screening Array (>650 000 variants) followed by imputation. The association of each germline variant with age- and BMI-adjusted letrozole concentrations was tested in self-reported white patients via linear regression assuming an additive genetic model. RESULTS: There were 228 patients who met the study-specific inclusion criteria and had both DNA and letrozole concentration data for this GWAS. The association for one genotyped polymorphism (rs7937) with letrozole concentration surpassed genome-wide significance (P = 5.26 × 10-10), explaining 13% of the variability in untransformed steady-state letrozole concentrations. Imputation around rs7937 and in silico analyses identified rs56113850, a variant in the CYP2A6 intron that may affect CYP2A6 expression and activity. rs7937 was associated with age- and BMI-adjusted letrozole levels even after adjusting for genotype-predicted CYP2A6 metabolic phenotype (P = 3.86 × 10-10). CONCLUSION: Our GWAS findings confirm that steady-state letrozole plasma concentrations are partially determined by germline polymorphisms that affect CYP2A6 activity, including variants near rs7937 such as the intronic rs56113850 variant. Further research is needed to confirm whether rs56113850 directly affects CYP2A6 activity and to integrate nonexonic variants into CYP2A6 phenotypic activity prediction systems.


Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Inhibidores de la Aromatasa/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Citocromo P-450 CYP2A6/genética , Femenino , Genotipo , Humanos , Letrozol
2.
Breast Cancer Res Treat ; 175(2): 297-303, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30747308

RESUMEN

PURPOSE: UGT2B17 gene deletion (UGT2B17*2) has been reported to affect bone health as well as the pharmacokinetics of aromatase inhibitor (AI) drugs such as exemestane. The goal of this study was to assess associations between UGT2B17 gene deletion and bone health prior to and after 24 months of AI treatment in postmenopausal women with hormone receptor positive (HR+) breast cancer. METHODS: Bone health in women with HR+ breast cancer enrolled on the prospective randomized Exemestane and Letrozole Pharmacogenetics (ELPh) trial was determined by measuring bone turnover markers (BTM) and bone mineral density (BMD) pre-treatment and after 3 BTM and 24 BMD months of treatment with either the steroidal AI exemestane or the nonsteroidal AI letrozole. DNA samples were genotyped for UGT2B17*2. RESULTS: Of the 455 subjects included in the analyses, 244 (53.6%) carried at least one copy of UGT2B17*2. UGT2B17*2 was associated with lower pre-treatment BMD at the hip (P = 0.01) and spine (P = 0.0076). Letrozole treatment was associated with a greater decrease in BMD of the hip (P = 0.03) and spine (P = 0.03) than exemestane. UGT2B17 genotype was not associated with changes in BMD from 24 months of AI treatment, though in UGT2B17*2 homozygous patients, there was a trend toward greater decreases in BMD of the spine from treatment with letrozole compared with exemestane (P = 0.05). CONCLUSION: UGT2B17*2 may be associated with lower baseline BMD in women with HR+ breast cancer. Exemestane is less detrimental to bone health than letrozole in postmenopausal women treated with AI, and this effect may be confined to patients carrying UGT2B17*2, though this finding requires independent validation.


Asunto(s)
Androstadienos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Glucuronosiltransferasa/genética , Letrozol/administración & dosificación , Antígenos de Histocompatibilidad Menor/genética , Androstadienos/efectos adversos , Inhibidores de la Aromatasa/administración & dosificación , Densidad Ósea/efectos de los fármacos , Densidad Ósea/genética , Remodelación Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Genotipo , Humanos , Letrozol/efectos adversos , Persona de Mediana Edad , Farmacogenética , Posmenopausia/efectos de los fármacos , Posmenopausia/genética , Tamoxifeno/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA