Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;34(8): 1055-1064, Aug. 2001. ilus, tab
Artículo en Inglés | LILACS | ID: lil-290143

RESUMEN

The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67 percent, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise


Asunto(s)
Animales , Enzimas/metabolismo , Peces/fisiología , Glucólisis/fisiología , Músculo Esquelético/enzimología , Esfuerzo Físico/fisiología , Encéfalo/enzimología , Enzimas/análisis , Fructosa-Bifosfatasa/metabolismo , Hígado/enzimología , Fosfofructoquinasa-1/metabolismo , Fosfoglucomutasa/metabolismo , Natación
2.
Braz J Med Biol Res ; 34(8): 1055-64, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11471046

RESUMEN

The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.


Asunto(s)
Enzimas/metabolismo , Peces/fisiología , Glucólisis/fisiología , Músculo Esquelético/enzimología , Condicionamiento Físico Animal/fisiología , Animales , Encéfalo/enzimología , Enzimas/análisis , Fructosa-Bifosfatasa/metabolismo , Hígado/enzimología , Fosfofructoquinasa-1/metabolismo , Fosfoglucomutasa/metabolismo , Natación/fisiología
3.
Comp Biochem Physiol B Biochem Mol Biol ; 120(3): 437-48, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9787804

RESUMEN

The roles of enzymatic antioxidant defenses in the natural tolerance of environmental stresses that impose changes in oxygen availability and oxygen consumption on animals is discussed with a particular focus on the biochemistry of estivation and metabolic depression in pulmonate land snails. Despite reduced oxygen consumption and PO2 during estivation, which should also mean reduced production of oxyradicals, the activities of antioxidant enzymes, such as superoxide dismutase and catalase, increased in 30 day-estivating snails. This appears to be an adaptation that allows the snails to deal with oxidative stress that takes place during arousal when PO2 and oxygen consumption rise rapidly. Indeed, oxidative stress was indicated by increased levels of lipid peroxidation damage products accumulating in hepatopancreas within minutes after arousal was initiated. The various metabolic sites responsible for free radical generation during arousal are still unknown but it seems unlikely that the enzyme xanthine oxidase plays any substantial role in this despite being implicated in oxidative stress in mammalian models of ischemia/reperfusion. We propose that the activation of antioxidant defenses in the organs of Otala lactea during estivation is a preparative mechanism against oxidative stress during arousal. Increased activities of antioxidant enzymes have also observed under other stress situations in which the actual production of oxyradicals should decrease. For example, antioxidant defenses are enhanced during anoxia exposure in garter snakes Thamnophis sirtalis parietalis (10 h at 5 degrees C) and leopard frogs Rana pipiens (30 h at 5 degrees C) and during freezing exposure (an ischemic condition due to plasma freezing) in T. sirtalis parietalis and wood frogs Rana sylvatica. It seems that enhancement of antioxidant enzymes during either anoxia or freezing is used as a preparatory mechanism to deal with a physiological oxidative stress that occurs rapidly within the early minutes of recovery during reoxygenation or thawing. Thus, a wide range of stress tolerant animals display coordinated changes in antioxidant defenses that allow them to deal with oxidative stress that occurs as part of natural cycles of stress/recovery that alter oxygen levels in tissues. The molecular mechanisms that trigger and regulate changes in antioxidant enzyme activities in these species are still unknown but could prove to have key relevance for the development of new intervention strategies in the treatment of cardiovascular ischemia/reperfusion injuries in humans.


Asunto(s)
Antioxidantes/metabolismo , Caracoles/metabolismo , Animales , Estivación , Humanos , Peroxidación de Lípido , Modelos Biológicos , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Vertebrados , Xantina Oxidasa/metabolismo
4.
Braz J Med Biol Res ; 29(3): 283-307, 1996 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8736122

RESUMEN

Although alien to man, the ability to endure the freezing of extracellular body fluids during the winter has developed in several species of terrestrially hibernating frogs and turtles as well as in many species of insects and other invertebrates. Wood frogs, for example, can endure freezing for at least 2 weeks with no breathing, no heart beat or blood circulation, and with up to 65% of their total body water as ice. Our studies are providing a comprehensive view of the requirements for natural freezing survival and of the physical and metabolic protection that must be offered for effective cryopreservation of vertebrate organs. Molecular mechanisms of natural freeze tolerance in lower vertebrates include: 1) control over ice crystal growth in plasma by ice nucleating proteins, 2) the accumulation of low molecular weight cryoprotectants to minimize intracellular dehydration and stabilize macromolecular components, and 3) good ischemia tolerance by all organs that may include metabolic arrest mechanisms to reduce organ energy requirements while frozen. Cryomicroscopy of tissue slices and magnetic resonance imaging (MRI) of whole animals is revealing the natural mode of ice propagation through an organism. MRI has also revealed that thawing is non-uniform; core organs (with high cryoprotectant levels) melt first, facilitating the early resumption of heart beat and blood circulation. Studies of the production and actions of the natural cryoprotectant, glucose, in frogs have shown its importance in maintaining a critical minimum cell volume in frozen organs and new work on the metabolic effects of whole body dehydration in 3 species of frogs has indicated that adaptations supporting freeze tolerance grew out of mechanisms that deal with desiccation resistance in amphibians. Studies of the regulation of cryoprotectant glucose synthesis by wood frog liver have shown the role of protein kinases and of alpha and beta adrenergic receptors in regulating the glycemic response, and of changes in membrane glucose transporter proteins to facilitate cryoprotectant distribution.


Asunto(s)
Criopreservación , Espacio Extracelular/fisiología , Congelación , Hígado/ultraestructura , Imagen por Resonancia Magnética , Adenosina Trifosfato/metabolismo , Animales , Temperatura Corporal/fisiología , Fosforilasas/metabolismo , Ranidae/metabolismo , Tortugas/metabolismo
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;29(3): 283-307, Mar. 1996. ilus, graf
Artículo en Inglés | LILACS | ID: lil-163836

RESUMEN

Although alien to man, the ability to endure the freezing of extracellular body fluids during the winter has developed in several species of terrestrially hibernating frogs and turtles as well as in many species of insects and other invertebrates. Wood frogs, for example, can endure freezing for at least 2 weeks with no breathing, no heart beat or blood circulation, and with up to 65 per cent of their total body water as ice. Our studies are providing a comprehensive view of the requirements for natural freezing survival and of the physical and metabolic protection that must be offered for effective cryopreservation of vertebrate organs. Molecular mechanisms of natural freeze tolerance in lower vertebrates include: 1) control over ice crystal growth in plasma by ice nucleating proteins, 2) the accumulation of low molecular weight cryoprotectants to minimize intracellular dehydration and stabilize macromolecular components, and 3) good ischemia tolerance by all organs that may include metabolic arrest mechanisms to reduce organ energy requirements while frozen. Cryomicroscopy of tissue slices and magnetic resonance imaging (MRI) of whole animals is revealing the natural mode of ice propagation through an organism. MRI has also revealed that thawing is non-uniform; core organs (with high cryoprotectant levels) melt first, facilitating the early resumption of heart beat and blood circulation. Studies of the production and actions of the natural cryoprotectant, glucose, in frogs have shown its importance in maintaining a critical minimum cell volume in frozen organs and new work on the metabolic effects of whole body dehydration in 3 species of frogs has indicated that adaptations supporting freeze tolerance grew out of mechanisms that deal with desiccation resistance in amphibians. Studies of the regulation of cryoprotectant glucose synthesis by wood frog liver have shown the role of protein kinases and of (alpha and beta adrenergic receptors in regulating the glycemic response, and of changes in membrane glucose transporter proteins to facilitate cryoprotectant distribution.


Asunto(s)
Animales , Criopreservación , Espacio Extracelular/fisiología , Hígado/ultraestructura , Congelación , Imagen por Resonancia Magnética , Adenosina Trifosfato/metabolismo , Anfibios/metabolismo , Temperatura Corporal/fisiología , Fosforilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA