Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 71(3): 842-51, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21123451

RESUMEN

BCR/ABL-transformed chronic myeloid leukemia (CML) cells accumulate numerous DNA double-strand breaks (DSB) induced by reactive oxygen species (ROS) and genotoxic agents. To repair these lesions BCR/ABL stimulate unfaithful DSB repair pathways, homologous recombination repair (HRR), nonhomologous end-joining (NHEJ), and single-strand annealing (SSA). Here, we show that BCR/ABL enhances the expression and increase nuclear localization of WRN (mutated in Werner syndrome), which is required for processing DSB ends during the repair. Other fusion tyrosine kinases (FTK), such as TEL/ABL, TEL/JAK2, TEL/PDGFßR, and NPM/ALK also elevate WRN. BCR/ABL induces WRN mRNA and protein expression in part by c-MYC-mediated activation of transcription and Bcl-xL-dependent inhibition of caspase-dependent cleavage, respectively. WRN is in complex with BCR/ABL resulting in WRN tyrosine phosphorylation and stimulation of its helicase and exonuclease activities. Activated WRN protects BCR/ABL-positive cells from the lethal effect of oxidative and genotoxic stresses, which causes DSBs. In addition, WRN promotes unfaithful recombination-dependent repair mechanisms HRR and SSA, and enhances the loss of DNA bases during NHEJ in leukemia cells. In summary, we postulate that BCR/ABL-mediated stimulation of WRN modulates the efficiency and fidelity of major DSB repair mechanisms to protect leukemia cells from apoptosis and to facilitate genomic instability.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas/genética , Proteínas de Fusión bcr-abl/genética , Inestabilidad Genómica , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , RecQ Helicasas/genética , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , ADN de Neoplasias/genética , Progresión de la Enfermedad , Exodesoxirribonucleasas/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Estrés Oxidativo/genética , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , RecQ Helicasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Helicasa del Síndrome de Werner
2.
Klin Oczna ; 111(4-6): 168-73, 2009.
Artículo en Polaco | MEDLINE | ID: mdl-19673452

RESUMEN

Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Retinal pigment epithelial (RPE) cells are prone to reactive oxygen species (ROS) arising during the stress due to intense oxygen metabolism and a high oxygen pressure. Additionally, the cells can be exposed to ROS as a consequence of accumulation of iron ions in these cells, sunlight exposure and tobacco smoke. There are several defense systems against RTF in the cell, including antioxidant enzymes, low-molecular weight antioxidants and DNA repair pathways. RPE cells display phagocytic activity towards outer segments of photoreceptors and this activity can be associated with additional oxidative stress since the segments are rich in long chain, polyunsaturated fatty acids (PUFA). The oxidation of PUFA leads to the production of additional ROS. Moreover, oxidized PUFA are not correctly cleaved in the lysosomes of RPE and are accumulated in the form of lipofuscin, which is deposited in Bruch's membrane in the form of drusen and in this way it stimulates immune responses, including phagocytosis, associated with the recruiting of macrophages and dendritic cells. In this time, RPE cells are exposed to ROS, produced in oxygen burst associated with phagocytosis. Further studies, both clinical/epidemiological and in vitro, are needed to better understand relationship between AMD and oxidative stress.


Asunto(s)
Envejecimiento/metabolismo , Degeneración Macular/etiología , Degeneración Macular/metabolismo , Estrés Oxidativo , Lámina Basal de la Coroides/metabolismo , Humanos , Oxidantes/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Fumar/efectos adversos , Luz Solar/efectos adversos
3.
Postepy Biochem ; 55(1): 36-45, 2009.
Artículo en Polaco | MEDLINE | ID: mdl-19514464

RESUMEN

Humans use primarily nonhomologous end joining (NHEJ) to repair DNA double strand breaks (DSBs), which are the most serious DNA damage, resulting in cell death if non-repaired or missrepaired. NHEJ directly joins together DNA ends resulted from DSBs. This pathway plays a key role in the development of vertebrate immune system through its involvement in the V(D)J recombination. Classical NHEJ in vertebrates involves a heterodimer of Ku proteins, the catalytic subunits of DNA-dependent protein kinase (DNA-PKCS), Artemis, Cernunnos-XLF and XRCC4/ligase DNA IV complex. This classical pathway may be assisted by DNA polymerases mu and lambda. Last 2 years brought new information on the mechanisms, proteins and functions of this DNA repair pathway. In 2006 Cernunnos-XLF was discovered, a protein playing a key role in NHEJ. Some alternative NHEJ pathways were also identified, lacking some of the main proteins of classical NHEJ, but involving other factors, including BRCA1, 53BP1, hPNK, WRN or MDC1. The results obtained so far suggest that not all key components and basic mechanisms of NHEJ have been identified. Future aspects of NHEJ research should include the determination of its role in cancer, aging, immune system development and basic nuclear metabolism.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Animales , ADN Helicasas/metabolismo , Humanos , Autoantígeno Ku
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA