Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295803

RESUMEN

In situ visualization of molecular assemblies near their macromolecular scale is a powerful tool to investigate fundamental cellular processes. Super-resolution light microscopies (SRM) overcome the diffraction limit and allow researchers to investigate molecular arrangements at the nanoscale. However, in bacterial cells, visualization of these assemblies can be challenging because of their small size and the presence of the cell wall. Thus, although conceptually promising, successful application of SRM techniques requires careful optimization in labeling biochemistry, fluorescent dye choice, bacterial biology and microscopy to gain biological insights. Here, we apply Stimulated Emission Depletion (STED) microscopy to visualize cell division proteins in bacterial cells, specifically E. coli and B. subtilis. We applied nanobodies that specifically recognize fluorescent proteins, such as GFP, mCherry2 and PAmCherry, fused to targets for STED imaging and evaluated the effect of various organic fluorescent dyes on the performance of STED in bacterial cells. We expect this research to guide scientists for in situ macromolecular visualization using STED in bacterial systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Complejos Multiproteicos/metabolismo , Anticuerpos de Dominio Único/metabolismo , Bacterias/citología , Bacterias/metabolismo , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Unión Proteica , Coloración y Etiquetado
2.
Sci Rep ; 8(1): 10137, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973667

RESUMEN

mNeonGreen fluorescent protein is capable of photo-switching, hence in principle applicable for super-resolution imaging. However, difficult-to-control blinking kinetics that lead to simultaneous emission of multiple nearby mNeonGreen molecules impedes its use for PALM. Here, we determined the on- and off- switching rate and the influence of illumination power on the simultaneous emission. Increasing illumination power reduces the probability of simultaneous emission, but not enough to generate high quality PALM images. Therefore, we introduce a simple data post-processing step that uses temporal and spatial information of molecule localizations to further reduce artifacts arising from simultaneous emission of nearby emitters. We also systematically evaluated various sample preparation steps to establish an optimized protocol to preserve cellular morphology and fluorescence signal. In summary, we propose a workflow for super-resolution imaging with mNeonGreen based on optimization of sample preparation, data acquisition and simple post-acquisition data processing. Application of our protocol enabled us to resolve the expected double band of bacterial cell division protein DivIVA, and to visualize that the chromosome organization protein ParB organized into sub-clusters instead of the typically observed diffraction-limited foci. We expect that our workflow allows a broad use of mNeonGreen for super-resolution microscopy, which is so far difficult to achieve.


Asunto(s)
Bacillus subtilis/citología , Proteínas Fluorescentes Verdes/metabolismo , Análisis de la Célula Individual/métodos , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , División Celular , Cromosomas Bacterianos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/normas , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Análisis de la Célula Individual/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA