Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 52(10): 5600-5609, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29595255

RESUMEN

Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe2+) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( EH) values for oxide-bound Fe2+ species. Recently, our group demonstrated that EH values for hematite- and goethite-bound Fe2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated EH values for oxide-bound Fe2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( kSA) values and EH and pH values [log( kSA) = - EH/0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe2+ relates to redox reaction kinetics.


Asunto(s)
Contaminantes Ambientales , Compuestos Férricos , Cinética , Oxidación-Reducción , Termodinámica
2.
Environ Sci Technol ; 50(16): 8538-47, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27427506

RESUMEN

Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides­hematite and goethite­and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+­goethite redox couple and 769 ± 2 mV for the aqueous Fe2+­hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.


Asunto(s)
Compuestos Férricos/química , Hierro/química , Compuestos de Hierro/química , Minerales/química , Compuestos Orgánicos , Oxidación-Reducción , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA